
Chapter 3 

Interpretation of Batch 
Reactor Data 

A rate equation characterizes the rate of reaction, and its form may either be 
suggested by theoretical considerations or simply be the result of an empirical 
curve-fitting procedure. In any case, the value of the constants of the equation 
can only be found by experiment; predictive methods are inadequate at present. 

The determination of the rate equation is usually a two-step procedure; first 
the concentration dependency is found at fixed temperature and then the temper- 
ature dependence of the rate constants is found, yielding the complete rate 
equation. 

Equipment by which empirical information is obtained can be divided into 
two types, the batch and flow reactors. The batch reactor is simply a container 
to hold the contents while they react. All that has to be determined is the extent 
of reaction at various times, and this can be followed in a number of ways, 
for example: 

1. By following the concentration of a given component. 
2. By following the change in some physical property of the fluid, such as the 

electrical conductivity or refractive index. 
3. By following the change in total pressure of a constant-volume system. 
4. By following the change in volume of a constant-pressure system. 

The experimental batch reactor is usually operated isothermally and at constant 
volume because it is easy to interpret the results of such runs. This reactor is a 
relatively simple device adaptable to small-scale laboratory set-ups, and it needs 
but little auxiliary equipment or instrumentation. Thus, it is used whenever 
possible for obtaining homogeneous kinetic data. This chapter deals with the 
batch reactor. 

The flow reactor is used primarily in the study of the kinetics of heterogeneous 
reactions. Planning of experiments and interpretation of data obtained in flow 
reactors are considered in later chapters. 

There are two procedures for analyzing kinetic data, the integral and the 
differential methods. In the integral method of analysis we guess a particular 
form of rate equation and, after appropriate integration and mathematical manip- 
ulation, predict that the plot of a certain concentration function versus time 
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should yield a straight line. The data are plotted, and if a reasonably good straight 
line is obtained, then the rate equation is said to satisfactorily fit the data. 

In the differential method of analysis we test the fit of the rate expression to 
the data directly and without any integration. However, since the rate expression 
is a differential equation, we must first find ( l /V ) (dNld t )  from the data before 
attempting the fitting procedure. 

There are advantages and disadvantages to each method. The integral method 
is easy to use and is recommended when testing specific mechanisms, or relatively 
simple rate expressions, or when the data are so scattered that we cannot reliably 
find the derivatives needed in the differential method. The differential method 
is useful in more complicated situations but requires more accurate or larger 
amounts of data. The integral method can only test this or that particular mecha- 
nism or rate form; the differential method can be used to develop or build up 
a rate equation to fit the data. 

In general, it is suggested that integral analysis be attempted first, and, if not 
successful, that the differential method be tried. 

3.1 CONSTANT-VOLUME BATCH REACTOR 

When we mention the constant-volume batch reactor we are really referring to 
the volume of reaction mixture, and not the volume of reactor. Thus, this term 
actually means a constant-density reaction system. Most liquid-phase reactions 
as well as all gas-phase reactions occurring in a constant-volume bomb fall in 
this class. 

In a constant-volume system the measure of reaction rate of component i be- 
comes 

or for ideal gases, where C = p / R T ,  

Thus, the rate of reaction of any component is given by the rate of change of 
its concentration or partial pressure; so no matter how we choose to follow 
the progress of the reaction, we must eventually relate this measure to the 
concentration or partial pressure if we are to follow the rate of reaction. 

For gas reactions with changing numbers of moles, a simple way of finding 
the reaction rate is to follow the change in total pressure .n of the system. Let 
us see how this is done. 

Analysis of Total Pressure Data Obtained in a Constant-Volume System. For 
isothermal gas reactions where the number of moles of material changes during 
reaction, let us develop the general expression which relates the changing total 
pressure of the system TI to the changing concentration or partial pressure of 
any of the reaction components. 
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Write the general stoichiometric equation, and under each term indicate the 
number of moles of that component: 

a A + bB + . . .  = rR + sS + . . .  

At time 0: N,, NBO N ~ o  Nso Nineit 

At time t: N,  = NAo - ax NB = NBo - bx NR = NRO + rx NS = NsO + sx Nine, 

Initially the total number of moles present in the system is 

but at time t it is 

where 

Assuming that the ideal gas law holds, we may write for any reactant, say Ain 
the system of volume V 

Combining Eqs. 3 and 4 we obtain 

Equation 5 gives the concentration or partial pressure of reactant A as a function 
of the total pressure n at time t ,  initial partial pressure of A, pAo, and initial total 
pressure of the system, .rr,. 

Similarly, for any product R we can find 

Equations 5 and 6 are the desired relationships between total pressure of the 
system and the partial pressure of reacting materials. 

It should be emphasized that if the precise stoichiometry is not known, or if 
more than one stoichiometric equation is needed to represent the reaction, then 
the "total pressure" procedure cannot be used. 
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The Conversion. Let us introduce one other useful term, the fractional conver- 
sion, or the fraction of any reactant, say A, converted to something else, or the 
fraction of A reacted away. We call this, simply, the conversion of A, with 
symbol X A  . 

Suppose that NAo is the initial amount of A in the reactor at time t = 0, and 
that NA is the amount present at time t. Then the conversion of A in the constant 
volume system is given by 

and 

We will develop the equations in this chapter in terms of concentration of reaction 
components and also in terms of conversions. 

Later we will relate XA and CA for the more general case where the volume 
of the system does not stay constant. 

Integral Method of Analysis of Data 

General Procedure. The integral method of analysis always puts a particular 
rate equation to the test by integrating and comparing the predicted C versus t 
curve with the experimental C versus t data. If the fit is unsatisfactory, another 
rate equation is guessed and tested. This procedure is shown and used in the 
cases next treated. It should be noted that the integral method is especially useful 
for fitting simple reaction types corresponding to elementary reactions. Let us 
take up these kinetic forms. 

Irreversible Unimolecular-Type First-Order Reactions. Consider the reaction 

Suppose we wish to test the first-order rate equation of the following type, 

for this reaction. Separating and integrating we obtain 
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In terms of conversion (see Eqs. 7 and 8), the rate equation, Eq. 10, becomes 

which on rearranging and integrating gives 

A plot of In (1 - XA) or In (CA/CAo) vs. t ,  as shown in Fig. 3.1, gives a straight 
line through the origin for this form of rate of equation. If the experimental data 
seems to be better fitted by a curve than by a straight line, try another rate form 
because the first-order reaction does not satisfactorily fit the data. 

Caution. We should point out that equations such as 

are first order but are not am'enable to this kind of analysis; hence, not all first- 
order reactions can be treated as shown above. 

Irreversible Bimolecular-Type Second-Order Reactions. Consider the re- 
action 

u 
f 

Figure 3.1 Test for the first-order rate equation, Eq. 10. 
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with corresponding rate equation 

Noting that the amounts of A and B that have reacted at any time t are equal 
and given by CAoXA, we may write Eqs. 13a and b in terms of XA as 

Letting M = CBoICA0 be the initial molar ratio of reactants, we obtain 

which on separation and formal integration becomes 

After breakdown into partial fractions, integration, and rearrangement, the final 
result in a number of different forms is 

Figure 3.2 shows two equivalent ways of obtaining a linear plot between the 
concentration function and time for this second-order rate law. 

Figure 3.2 Test for the bimolecular mechanism A + B -+ R with CAo # C,,, 
or for the second-order reaction, Eq. 13. 
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If C,, is much larger than CAo, C, remains approximately constant at all times, 
and Eq. 14 approaches Eq. 11 or 12 for the first-order reaction. Thus, the second- 
order reaction becomes a pseudo first-order reaction. 

Caution 1. In the special case where reactants are introduced in their stoichio- 
metric ratio, the integrated rate expression becomes indeterminate and this 
requires taking limits of quotients for evaluation. This difficulty is avoided if we 
go back to the original differential rate expression and solve it for this particular 
reactant ratio. Thus, for the second-order reaction with equal initial concentra- 
tions of A and B, or for the reaction 

the defining second-order differential equation becomes 

which on integration yields 

Plotting the variables as shown in Fig. 3.3 provides a test for this rate expression. 
In practice we should choose reactant ratios either equal to or widely different 

from the stoichiometric ratio. 

Caution 2. The integrated expression depends on the stoichiometry as well as 
the kinetics. To illustrate, if the reaction 

Figure 3.3 Test for the bimolecular 
or for the second-order reaction of 

0 
t 

mechanisms, A + B + R with CAo = 
Eq. 15. 
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is first order with respect to both A and B, hence second order overall, or 

The integrated form is 

When a stoichiometric reactant ratio is used the integrated form is 

These two cautions apply to all reaction types. Thus, special forms for the 
integrated expressions appear whenever reactants are used in stoichiometric 
ratios, or when the reaction is not elementary. 

Irreversible Trimolecular-Type Third-Order Reactions. For the reaction 

A + B + D +products (204 

let the rate equation be 

or in terms of XA 

On separation of variables, breakdown into partial fractions, and integration, 
we obtain after manipulation 

Now if CDo is much larger than both CAo and CBo, the reaction becomes second 
order and Eq. 21 reduces to Eq. 14. 



46 Chapter 3 Interpretation of Batch Reactor Data 

All trimolecular reactions found so far are of the form of Eq. 22 or 25. Thus 

d C ~  - k c  C? A + 2 B - R  with -rA= --- 
dt A B (22) 

In terms of conversions the rate of reaction becomes 

-- dXA - kCio  (1 - XA)(M - 2XA)' 
dt 

where M = CBdCAo. On integration this gives 

Similarly, for the reaction 

dcA - kCACi A + B + R  with -r,= --- 
dt 

integration gives 

Empirical Rate Equations of nth Order. When the mechanism of reaction is 
not known, we often attempt to fit the data with an nth-order rate equation of 
the form 

which on separation and integration yields 
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The order n cannot be found explicitly from Eq. 29, so a trial-and-error solution 
must be made. This is not too difficult, however. Just select a value for n and 
calculate k. The value of n which minimizes the variation in k is the desired 
value of n. 

One curious feature of this rate form is that reactions with order n > 1 can 
never go to completion in finite time. On the other hand, for orders n < 1 this 
rate form predicts that the reactant concentration will fall to zero and then 
become negative at some finite time, found from Eq. 29, so 

Since the real concentration cannot fall below zero we should not carry out 
the integration beyond this time for n < 1. Also, as a consequence of this feature, 
in real systems the observed fractional order will shift upward to unity as reactant 
is depleted. 

Zero-Order Reactions. A reaction is of zero order when the rate of reaction 
is independent of the concentration of materials; thus 

Integrating and noting that CA can never become negative, we obtain directly 

CAo - CA = CAoXA = kt for t < 

CA=O for t z -  

which means that the conversion is proportional to time, as shown in Fig. 3.4. 
As a rule, reactions are of zero order only in certain concentration ranges-the 

higher concentrations. If the concentration is lowered far enough, we usually 

Figure 3.4 Test for a zero-order reaction, or rate equation, Eq. 30. 
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find that the reaction becomes concentration-dependent, in which case the order 
rises from zero. 

In general, zero-order reactions are those whose rates are determined by some 
factor other than the concentration of the reacting materials, e.g., the intensity 
of radiation within the vat for photochemical reactions, or the surface available 
in certain solid catalyzed gas reactions. It is important, then, to define the rate 
of zero-order reactions so that this other factor is included and properly ac- 
counted for. 

Overall Order of Irreversible Reactions from the Half-Life t,,. Sometimes, for 
the irreversible reaction 

we may write 

If the reactants are present in their stoichiometric ratios, they will remain at 
that ratio throughout the reaction. Thus, for reactants A and B at any time 
CB/CA = Pla, and we may write 

Integrating for n # 1 gives 

Defining the half-life of the reaction, t,, , as the time needed for the concentration 
of reactants to drop to one-half the original value, we obtain 

This expression shows that a plot of log t,, vs. log CAo gives a straight line of 
slope 1 - n, as shown in Fig. 3.5. 

The half-life method requires making a series of runs, each at a different initial 
concentration, and shows that the fractional conversion in a given time rises 
with increased concentration for orders greater than one, drops with increased 
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log CAO 

Figure 3.5 Overall order of reaction from 
a series of half-life experiments, each at a 
different initial concentration of reactant. 

2 

00 
9 

concentration for orders less than one, and is independent of initial concentration 
for reactions of first order. 

Numerous variations of this procedure are possible. For instance, by having 
all but one component, say Ain large excess, we can find the order with respect 
to that one component. For this situation the general expression reduces to 

E q 3 3 a > q S l o p e =  1 - n  
Y 

~ ~ ~ 0 r d e r  < 1 Order > 1 

J r =  

where 

= k (CkOe  . .) and CB CBo 

And here is another variation of the half-life method. 

Fractional Life Method t,. The half-life method can be extended to any frac- 
tional life method in which the concentration of reactant drops to any fractional 
value F = CA/CAo in time t,. The derivation is a direct extension of the half-life 
method giving 

Thus, a plot of log tF versus log CAo, as shown in Fig. 3.5, will give the reac- 
tion order. 

Example E3.1 illustrates this approach. 

Irreversible Reactions in Parallel. Consider the simplest case, A decomposing 
by two competing paths, both elementary reactions: 
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The rates of change of the three components are given by 

This is the first time we have encountered multiple reactions. For these in general, 
if it is necessary to write N stoichiometric equations to describe what is happening, 
then it is necessary to follow the decomposition of N reaction components to 
describe the kinetics. Thus, in this system following C,, or CR, or C, alone will 
not give both k ,  and k,. At least two components must be followed. Then, 
from the stoichiometry, noting that C, + CR + Cs is constant, we can find the 
concentration of the third component. 

The k values are found using all three differential rate equations. First of all, 
Eq. 34, which is of simple first order, is integrated to give 

-In - = (k ,  + k,)t 

When plotted as in Fig. 3.6, the slope is k ,  + k,. Then dividing Eq. 35 by Eq. 
36 we obtain the following (Fig. 3.6). 

which when integrated gives simply 

This result is shown in Fig. 3.6. Thus, the slope of a plot of CR versus Cs 
gives the ratio kllk2. Knowing k,lk2 as well as k ,  + k, gives k ,  and k,. Typical 
concentration-time curves of the three components in a batch reactor for the 
case where CRo = Cso = 0 and k,  > k, are shown in Fig. 3.7. 

Reactions in parallel are considered in detail in Chapter 7. 

Homogeneous Catalyzed Reactions. Suppose the reaction rate for a homoge- 
neous catalyzed system is the sum of rates of both the uncatalyzed and cata- 
lyzed reactions, 
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Figure 3.6 Evaluation of the rate constants for two competing elementary 

fR first-order reactions of the type A\ . 
S 

with corresponding reaction rates 

This means that the reaction would proceed even without a catalyst present and 
that the rate of the catalyzed reaction is directly proportional to the catalyst 
concentration. The overall rate of disappearance of reactant A is then 

On integration, noting that the catalyst concentration remains unchanged, we 
have 

c A -In - = -In (1 - X,) = ( k ,  + k2Cc)t = kobserved t 
C~~ 

U 
t 

Figure 3.7 Typical concentration-time curves for competing reactions. 
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Figure 3.8 Rate constants for a homogeneous catalyzed reaction 
from a series of runs with different catalyst concentrations. 

Making a series of runs with different catalyst concentrations allows us to find 
k, and k,. This is done by plotting the observed k value against the catalyst 
concentrations as shown in Fig. 3.8. The slope of such a plot is k, and the 
intercept k,. 

Autocatalytic Reactions. A reaction in which one of the products of reaction 
acts as a catalyst is called an autocatalytic reaction. The simplest such reaction is 

for which the rate equation is 

Because the total number of moles of A and R remain unchanged as A is 
consumed, we may write that at any time 

Co = CA + CR = CAO + CRO = constant 

Thus, the rate equation becomes 

Rearranging and breaking into partial fractions, we obtain 

which on integration gives 
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Figure 3.9 Conversion-time and rate-concentration curves for autocatalytic reaction 
of Eq. 41. This shape is typical for this type of reaction. 

In terms of the initial reactant ratio M = CRdCAO and fractional conversion of 
A, this can be written as 

For an autocatalytic reaction in a batch reactor some product R must be present 
if the reaction is to proceed at all. Starting with a very small concentration of 
R, we see qualitatively that the rate will rise as R is formed. At the other extreme, 
when A is just about used up the rate must drop to zero. This result is given in 
Fig. 3.9, which shows that the rate follows a parabola, with a maximum where 
the concentrations of A and R are equal. 

To test for an autocatalytic reaction, plot the .time and concentration coordi- 
nates of Eq. 42 or 43, as shown in Fig. 3.10 and see whether a straight line passing 
through zero is obtained. 

Autocatalytic reactions are considered in more detail in Chapter 6. 

Irreversible Reactions in Series. We first consider consecutive unimolecular- 
type first-order reactions such as 

Figure 3.10 Test for the autocatalytic reaction of Eq. 41. 



54 Chapter 3 Interpretation of Batch Reactor Data 

whose rate equations for the three components are 

Let us start with a concentration CAO of A, no R or S present, and see how the 
concentrations of the components change with time. By integration of Eq. 44 
we find the concentration of A to be 

To find the changing concentration of R, substitute the concentration of A from 
Eq. 47 into the differential equation governing the rate of change of R, Eq. 45; thus 

which is a first-order linear differential equation of the form 

By multiplying through with the integrating factor elPdn the solution is 

yeJPdn = \ QeJPdx d r  + constant 

Applying this general procedure to the integration of Eq. 48, we find that the 
integrating factor is ekzt. The constant of integration is found to be -klCAol 
(k ,  - k,) from the initial conditions C,, = 0 at t = 0, and the final expression 
for the changing concentration of R is 

Noting that there is no change in total number of moles, the stoichiometry relates 
the concentrations of reacting components by 
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which with Eqs. 47 and 49 gives 

Thus, we have found how the concentrations of components A, R, and S vary 
with time. 

Now if k2 is much larger than k,, Eq. 50 reduces to 

Cs = C,, (1 - e-ki'), k2 9 k1 

In other words, the rate is determined by k,  or the first step of the two-step 
reaction. 

If k,  is much larger than k,, then 

which is a first-order reaction governed by k,, the slower step in the two-step 
reaction. Thus, in general, for any number of reactions in series it is the slowest 
step that has the greatest influence on the overall reaction rate. 

As may be expected, the values of k, and k2 also govern the location and 
maximum concentration of R. This may be found by differentiating Eq. 49 and 
setting dCRldt = 0. The time at which the maximum concentration of R occurs 
is thus 

t,,, = - - 
h o e  mean k2 - kl 

The maximum concentration of R is found by combining Eqs. 49 and 51 to give 

Figure 3.11 shows the general characteristics of the concentration-time curves 
for the three components; A decreases exponentially, R rises to a maximum and 
then falls, and S rises continuously, the greatest rate of increase of S occurring 
where R is a maximum. In particular, this figure shows that one can evaluate k1 
and k, by noting the maximum concentration of intermediate and the time when 
this maximum is reached. Chapter 8 covers series reactions in more detail. 

For a longer chain of reactions, say 

the treatment is similar, though more cumbersome than the two-step reaction 
just considered. Figure 3.12 illustrates typical concentration-time curves for 
this situation. 
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C 

Eq. 52 

0 -I t + Eq. 51 

Figure 3.11 Typical concentration-time curves 
for consecutive first-order reactions. 

First-Order Reversible Reactions. Though no reaction ever goes to completion, 
we can consider many reactions to be essentially irreversible because of the large 
value of the equilibrium constant. These are the situations we have examined 
up to this point. Let us now consider reactions for which complete conversion 
cannot be assumed. The simplest case is the opposed unimolecular-type reaction 

kl 
A R, Kc = K = equilibrium constant 

k2 
(534 

Starting with a concentration ratio M = CRdCAo the rate equation is 

Maximum of T curve 

Figure 3.12 Concentration-time curves for a chain of successive first- 
order reactions. Only for the last two compounds do the maximum and 
the inflection points occur at the same time. 



3.1 Constant-Volume Batch Reactor 57 

Now at equilibrium dC,/dt = 0. Hence from Eq. 53 we find the fractional 
conversion of A at equilibrium conditions to be 

and the equilibrium constant to be 

Combining the above three equations we obtain, in terms of the equilibrium con- 
version, 

With conversions measured in terms of XAe, this may be looked on as a pseudo 
first-order irreversible reaction which on integration gives 

A plot of -In (1 - XA/XAe) vs. t, as shown in Fig. 3.13, gives a straight line. 
The similarity between equations for the first-order irreversible and reversible 

reactions can be seen by comparing Eq. 12 with Eq. 54 or by comparing Fig. 3.1 
with Fig. 3.13. Thus, the irreversible reaction is simply the special case of the 
reversible reaction in which CA, = 0, or XAe = 1, or Kc = m. 

t 

Figure 3.13 Test for the unimolecular type 
reversible reactions of Eq. 53. 
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Second-Order Reversible Reactions. For the bimolecular-type second-order re- 
actions 

with the restrictions that CAo = C,, and CRo = Cso = 0, the integrated rate 
equations for A and B are all identical, as follows 

A plot as shown in Fig. 3.14 can then be used to test the adequacy of these kinetics. 

Reversible Reactions in General. For orders other than one or two, integration 
of the rate equation becomes cumbersome. So if Eq. 54 or 56 is not able to fit 
the data, then the search for an adequate rate equation is best done by the 
differential method. 

Figure 3.14 Test for the reversible bimolecular reactions of Eq. 55. 
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Figure 3.15 Behavior of a reaction that follows Eq. 57. 

Reactions of Shifting Order. In searching for a kinetic equation it may be found 
that the data are well fitted by one reaction order at high concentrations but by 
another order at low concentrations. Consider the reaction 

d C ~  - k l C ~  A-*R with - rA= -- - 
dt 1 + k2CA 

From this rate equation we see 

At high CA-the reaction is of zero order with rate constant kllk2 
(or kzCA 1) 

At low CA-the reaction is of first order with rate constant k, 
(or kzCA 1) 

This behavior is shown in Fig. 3.15. 
To apply the integral method, separate variables and integrate Eq. 57. This gives 

To linearize, rearrange Eq. 58a to give 

Two ways to test this rate form are then shown in Fig. 3.16. 
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3.16 Test of the rate equation, Eq. 57, 

1 Intercept = - - 
k2 

by integral analysis. 

By similar reasoning to the above we can show that the general rate form 

shifts from order m - n at high concentration to order m at low concentration, 
the transition taking place where k2Ca = 1. This type of equation can then be 
used to fit data of any two orders. 

Another form which can account for this shift is 

Mechanism studies may suggest which form to use. In any case, if one of these 
equation forms will fit the data, so will the other. 

The rate form of Eq. 57 and some of its generalizations are used to represent 
a number of widely different kinds of reactions. For example, in homogeneous 
systems this form is used for enzyme-catalyzed reactions where it is suggested 
by mechanistic studies (see the Michaelis-Menten mechanism in Chap. 2 and in 
Chap. 27). It is also used to represent the kinetics of surface-catalyzed reactions. 

In mechanistic studies, this form of equation appears whenever the rate-con- 
trolling step of a reaction is viewed to involve the association of reactant with 
some quantity that is present in limited but fixed amounts; for example, the 
association of reactant with enzyme to form a complex, or the association of 
gaseous reactant with an active site on the catalyst surface. 

FIND A RATE EQUATION USING THE INTEGRAL METHOD 

Reactant A decomposes in a batch reactor 
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The composition of A in the reactor is measured at various times with results 
shown in the following columns 1 and 2. Find a rate equation to represent the data. 

Column 1 Column 2 Column 3 Column 4 

Time Concentration 
t ,  S CA, mollliter 

V 

Reported data 
Y 

Calculated 

SOLUTION 

Guess First-Order Kinetics. Start by guessing the simplest rate form, or first- 
order kinetics. This means that In CAo/CA vs, t should give a straight line, see 
Eq. 11 or 12, or Fig. 3.1. So column 3 is calculated and the plot of Fig. E3.la is 
made. Unfortunately, this does not give a straight line, so first-order kinetics 
cannot reasonably represent the data, and we must guess another rate form. 

First-order kinetics should 
fall on a straight line. 

These data do not, 

c~~ In - 
CA 

columns 1 and 3 

0 50 100 200 300 
Time t, s 

Figure E3.la 

Guess Second-Order Kinetics. Equation 16 tells that 1/C, vs. t should give a 
straight line. So calculate column 4, plot column 1 vs, column 4, as shown in Fig. 
E3.lb. Again, this does not give a straight line, so a second-order kinetic form 
is rejected. 
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h 
1.0 - 

Second-order kinetics should 

0.8 - These data do not, 

0.6 - 
1 - 

c A 
0.4 - 

columns 1 and 4 

0 1 I I I I * 
0 50 100 200 300 

Time t, s 

Figure E3.lb 

Guess nth-Order Kinetics. Let's plan to use the fractional life method with 
F = 80%. Then Eq. 33b becomes 

Next take logarithms 

The procedure is as follows. First accurately plot the C, vs. t data, draw a smooth 
curve to represent the data (most important) as shown in Fig. E3.lc, then pick 
CAo = 10, 5, and 2 and fill in the following table from this figure. 

'A end Time needed 
'A0 (= o.8cAo) t ~ ,  ?3 log t~ log CAo 

From the curve, not the data 

I Next, plot log t, vs. log CAo, as shown in Fig. E3.ld and find the slope. 
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Figures E3.lc and E3.1d 

A smooth curve does not 
necessarily pass through 

all the data points 

We now have the reaction order. To evaluate the rate constant, take any point 
on the CA vs. t curve. Pick CAo = 10, for which t, = 18.5 s. Replacing all values 
into Eq. (i) gives 

1.75 

1.5 
M 
- 

1.25 

I 
180 215 

0 I * 1 .o 

from which 

A 
- 

- :. n = 1.4 

- 

I I * 

k = 0.005 

Therefore, the rate equation that represents this reaction is 

0 100 200 300 0 0.5 1.0 

mol 
rno10.~ . s liter. s 

Differential Method of Analysis of Data 

The differential method of analysis deals directly with the differential rate equa- 
tion to be tested, evaluating all terms in the equation including the derivative 
dC,ldt, and testing the goodness of fit of the equation with experiment. 

The procedure is as follows. 

1. Plot the CA vs. t data, and then by eye carefully draw a smooth curve to 
represent the data. This curve most likely will not pass through all the 
experimental points. 

2. Determine the slope of this curve at suitably selected concentration values. 
These slopes dC,ldt = r, are the rates of reaction at these compositions. 
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Figure 3.17 Test for the particular rate Figure 3.18 Test for an nth-order rate 
form -r, = kf(C,) by the differential form by the differential method. 
method. 

- 
5 
d - 
w 
- 
b - 
,4 - 
8 - * 

3. Now search for a rate expression to represent this rA vs. CA data, either by 
(a) picking and testing a particular rate form, -rA = kf (C,),  see Fig. 17, or 
(b) testing an nth-order form -rA = k c :  by taking logarithms of the 

rate equation (see Fig. 3.18). 

* 

With certain simpler rate equations, however, mathematical manipulation may 
be able to yield an expression suitable for graphical testing. As an example, 
consider a set of C, vs. t data to which we want to fit the M-M equation 

Guess f (CA) log CA 

which has already been treated by the integral method of analysis. By the differen- 
tial method we can obtain -rA vs. C A .  However, how do we make a straight- 
line plot to evaluate k ,  and k,? As suggested, let us manipulate Eq. 57 to obtain 
a more useful expression. Thus, taking reciprocals we obtain 

and a plot of I / ( - ? - , )  vs. l / C A  is linear, as shown in Fig. 3.19. 
Alternatively, a different manipulation (multiply Eq. 61 by k,(-rA)lk2) yields 

another form, also suitable for testing, thus 

A plot of -rA vs. ( - r A ) / C A  is linear, as shown in Fig. 3.19. 
Whenever a rate equation can be manipulated to give a linear plot, this becomes 

a simple way of testing the equation. So, with any given problem we must use 
good judgment in planning our experimental program. 
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- 

k; b\. 
Eq. 62 Eq. 61 / -rA 

- 

Slope = - 
k l  

Figure 3.19 Two ways of testing the rate equation -rA = k,C,/(l + k,CA) 
by differential analysis. 

FIND A RATE EQUATION TO FIT A SET OF DATA USING 
THE DIFFERENTIAL METHOD 

Try to fit an nth-order rate equation to the concentration vs. time data of Exam- 
ple 3.1. 

The data are tabulated in the following columns 1 and 2 and are plotted in 
Fig. E3.2~.  

Smooth curve to 
8 

* Reported experimental 
6 data, seven points 

E 
3 

2 

0 
0 100 200 300 

I Time r, s 

Figure E3.2a 
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Column 1 Column 2 Column 3 Column 4 Column 5 

Time Concentration Slope, from Fig. E 3 . 2 ~  
t, s CA,  mollliter (dC,ldt) log10 ( - d C ~ / d t )  log10 CA 

0 10 (10 - O)/(O - 75)  = -0.1333 -0.875 1 .OOO 
20 8 (10 - O)/(-3 -94) = -0.1031 -0.987 0.903 
40 6 (10 - O)/(-21 - 131) = -0.0658 -1.182 0.773 
60 5 (8 - O)/(-15 - 180) = -0.0410 -1.387 0.699 

120 3 (6 - O)/(-10 - 252) = -0.0238 -1.623 0.477 
180 2 ( 4  - 1)/(24 - 255) = -0.0108 - 1.967 0.301 
300 1 (3  - I ) / ( -10  - 300) = -0.0065 -2.187 0.000 

Now carefully draw a smooth curve to represent the data and at CA = 10, 8, 
6, 5, 3, 2, 1, draw tangents to the curve, and evaluate them (see column 3). 

Next, to fit an nth-order rate equation to this data, or 

dC* - kc", -rA= dt 

take logarithms of both sides (see columns 3 and 4), or 

loglo -x = loglOk + nlogl0CA ( dCA) - - - - - - - - - - -  
Y 

intercept J Lop: 
and plot as in Fig. E3.2b. The slope and intercept of the best line gives n and k 
(see Fig.E3.2b). So the rate equation is 

~ C A  mol -rA = - - = (0.005 literO," ) ~ i 4 3 ,  - 
dt mo1°,43 . s liter. s 

Warning. In step 1, if you use a computer to fit a polynomial to the data it could 
lead to disaster. For example, consider fitting a sixth-degree polynomial to the 
seven data points, or an (n - 1) degree polynomial to n points. 

Fitting by eye you'd get a smooth curve, as shown in Fig. E3.2~.  But if a 
computer is used to obtain a polynomial that would pass through all the points 
the result would very well be as shown in Fig. E3.2d. 

Now, which of these curves makes more sense and which would you use? This 
is why we say "draw a smooth curve by eye to represent the data." But beware, 
to draw such a curve is not that simple. Take care. 
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I \intercept = loglo k = -2.305 
k = 0.005 

Figure E3.2b 

This curve does This curve passes 
not pass through through all points 

Figure E3.2c, d The same seven points fitted by curves two different ways. 

3.2 VARYING-VOLUME BATCH REACTOR 

These reactors are much more complex than the simple constant-volume batch 
reactor. Their main use would be in the microprocessing field where a capillary 
tube with a movable bead would represent the reactor (see Fig. 3.20). 

The progress of the reaction is followed by noting the movement of the bead 
with time, a much simpler procedure than trying to measure the composition of 
the mixture, especially for microreactors. Thus, 

V, = initial volume of the reactor 

V = the volume at time t. 
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I Reactor, [Movable bead / 

Figure 3.20 A varying-volume batch reactor. 

This kind of reactor can be used for isothermal constant pressure operations, of 
reactions having a single stoichiometry. For such systems the volume is linearly 
related to the conversion, or 

where EA is the fractional change in volume of the system between no conversion 
and complete conversion of reactant A. Thus 

As an example of the use of E , ,  consider the isothermal gas-phase reaction 

By starting with pure reactant A, 

but with 50% inerts present at the start, two volumes of reactant mixture yield, 
on complete conversion, five volumes of product mixture. In this case 

We see, then, that E A  accounts for both the reaction stoichiometry and the 
presence of inerts. Noting that 
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we have, on combining with Eq. 63, 

Thus 

which is the relationship between conversion and concentration for isothermal 
varying-volume (or varying-density) systems satisfying the linearity assumption 
of Eq. 63. 

The rate of reaction (disappearance of component A), is, in general 

Replacing V from Eq. 63a and NA from Eq. 65 we end up with the rate in terms 
of the conversion 

or in terms of volume, from Eqs. 63 

Differential Method of Analysis 

The procedure for differential analysis of isothermal varying volume data is the 
same as for the constant-volume situation except that we replace 

dC, C ~ o  dV with -- c~~ d (In V) or -- 
dt VEA dt EA dt 

This means plot In V vs. t  and take slopes. 

Integral Method of Analysis 

Unfortunately, only a few of the simpler rate forms integrate to give manageable 
V vs, t  expressions. Let us look at these. 
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Zero-Order Reactions For a homogeneous zero-order reaction the rate of 
change of any reactant A is independent of the concentration of materials, or 

Integrating gives 

As shown in Fig. 3.21, the logarithm of the fractional change in volume versus 
time yields a straight line of slope ksA/CAO. 

First-Order Reactions. For a unimolecular-type first-order reaction the rate of 
change of reactant A is 

Replacing X,  by V from Eqs. 63 and integrating gives 

A semilogarithmic plot of Eq. 72, as shown in Fig. 3.22, yields a straight line of 
slope k. 

Second-Order Reactions. For a bimolecular-type second-order reaction 

2A +products 

Figure 3.21 Test for a homogeneous zero-order reaction, Eq. 69, 
in a constant-pressure, varying volume reactor. 
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Eq. 72 

c Slope = k 
I 

0 t 

Figure 3.22 Test for a first-order reaction, Eq. 71, 
in a constant-pressure, varying-volume reactor. 

or 

A + B -+products, with CAO = CBO 

the rate is given by 

Replacing XA by V from Eqs. 63 and then integrating gives, after much algebraic 
manipulation, 

Figure 3.23 shows how to test for those kinetics. 

Figure 3.23 Test for the second-order 
reaction, Eq. 73, in a constant-pressure, 
varying-volume reactor. 
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nth-Order and Other Reactions. For all rate forms other than zero-, first-, and 
second-order the integral method of analysis is not useful. 

3.3 TEMPERATURE AND REACTION RATE 

So far we have examined the effect of concentration of reactants and products 
on the rate of reaction, all at a given temperature level. To obtain the complete 
rate equation, we also need to know the role of temperature on reaction rate. 
Now in a typical rate equation we have 

and it is the reaction rate constant, the concentration-independent term, which 
is affected by the temperature, whereas the concentration-dependent terms f(C) 
usually remain unchanged at different temperatures. 

Chemical theory predicts that the rate constant should be temperature-depen- 
dent in the following manner: 

However, since the exponential term is much more temperature-sensitive than 
the power term, we can reasonably consider the rate constants to vary approxi- 
mately as e-EIRT. 

Thus, after finding the concentration dependency of the reaction rate, we can 
then examine for the variation of the rate constant with temperature by an 
Arrhenius-type relationship - 

- 

This is conveniently determined by plotting In k versus 1/T,  as shown in Fig. 3.24. 
If the rate constant is found at two different temperatures we have from 

Chap. 2, 

1 IT 

Figure 3.24 Temperature dependency of a reaction 
according to Arrhenius' law. 
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Finally, as mentioned in Chap. 2, a shift in E with temperature reflects a change 
in controlling mechanism of reaction. Since this is likely to be accompanied by 
a change in concentration dependency, this possibility should also be examined. 

Warning on Using Pressure Measures. When dealing with gases, engineers and 
chemists often measure compositions in terms of partial and total pressures, and 
then develop their rate equations in terms of pressures, without realizing that 
this can lead to problems. The reason is that the activation energy calculated 
when using these units is incorrect. Let us illustrate. 

CORRECT AND INCORRECT E VALUES 

Experimental studies of a specific decomposition of A in a batch reactor using 
pressure units show exactly the same rate at two different temperatures: 

at 400 K -rA = 2.3 p i  
where 

at 500 K -rA = 2 . 3 p i  
PA = [atml 

(a) Evaluate the activation using these units 
(b) Transform the rate expressions into concentration units and then evaluate 

the activation energy. 

The pressure is not excessive, so the ideal gas law can be used. 

/ SOLUTION 

(a) Using Pressure Units. We see right away that a change in temperature 
does not affect the rate of reaction. This means that 

E = 0 

Alternatively, we can find E by going through the calculations. Thus 

I hence replacing in Eq. 75 shows that 

E = 0 

(b) Transform pA into C,, then $nd E .  First write the rate equations with 
all units shown: 
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Next change p,  to C,. From ideal gas law 

1 Combining the two preceding equations 

mol m3. atm 
-'A1 = 2.3 m3. s .  atm2 82.06 X - 

mole K 
)2 (400 K)2 

At 500 K, similarly 

where 

where 

Here we see that in concentration units the rate constants are not indepen- 
dent of temperature. Evaluating the activation energy from Eq. 75, and 
replacing numbers gives 

E = 7394 
mol 

I This example shows that E values differ when either p or C used to 
measure concentrations of materials. 

Final Notes 

1. Chemistry (collision theory or transition state theory) has developed the 
equations for reaction rates and activation energies in terms of concen- 
tration. 

2. Literature tabulations for E and -rA for homogeneous reactions are nor- 
mally based on concentrations. The clue to this is that the units for the 
rate constant are often s-l, literlmol. s, etc., without pressure appearing in 
the units. 
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3. It is a good idea when making runs at different temperatures first to change 
all p values to C values by using the relationships 

pA = CART for ideal gases 

pA = zCART for nonideal gases, where z = compressibility factor 

and then proceed to solve the problem. This will avoid confusion on units 
later on, especially if the reaction is reversible or involves liquids and/or 
solids as well as gases. 

3.4 THE SEARCH FOR A RATE EQUATION 

In searching for a rate equation and mechanism to fit a set of experimental data, 
we would like answers to two questions: 

1. Have we the correct mechanism and corresponding type of rate equation? 
2. Once we have the right form of rate equation, do we have the best values 

for the rate constants in the equation? 

The difficult question to answer is the first of the preceding two questions. Let 
us see why this is so. 

Suppose we have a set of data and we wish to find out whether any one of 
the families of curves-parabolas, cubics, hyperbolas, exponentials, etc., each 
representing a different rate family-really fits these data better than any other. 
This question cannot be answered simply; neither can high-powered mathemati- 
cal or statistical methods help in deciding for us. The one exception to this 
conclusion occurs when one of the families being compared is a straight line. 
For this situation we can simply, consistently, and fairly reliably tell whether the 
straight line does not reasonably fit the data. Thus, we have what is essentially 
a negative test, one that allows us to reject a straight line family when there is 
sufficient evidence against it. 

All the rate equations in this chapter were manipulated mathematically into 
a linearized form because of this particular property of the family of straight 
lines that allows it to be tested and rejected. 

Three methods are commonly used to test for the linearity of a set of points. 
These are as follows: 

Calculation of k from Individual Data Points. With a rate equation at hand, 
the rate constant can be found for each experimental point by either the integral 
or differential method. If no trend in k values is discernible, the rate equation 
is considered to be satisfactory and the k values are averaged. 

Now the k values calculated this way are the slopes of lines joining the individ- 
ual points to the origin. So for the same magnitude of scatter on the graph the 
k values calculated for points near the origin (low conversion) will vary widely, 
whereas those calculated for points far from the origin will show little variation 
(Fig. 3.25). This fact can make it difficult to decide whether k is constant and, 
if so, what is its best mean value. 
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Figure 3.25 How the location of the experimental points influences the 
scatter in calculated k values. 

Calculation of k from Pairs of Data Points. k values can be calculated from 
successive pairs of experimental points. For large data scatter, however, or for 
points close together, this procedure will give widely different k values from 
which k,,,, will be difficult to determine. In fact, finding k,,,, by this procedure 
for points located at equal intervals on the x-axis is equivalent to considering 
only the two extreme data points while ignoring all the data points in between. 
This fact can easily be verified. Figure 3.26 illustrates this procedure. 

This is a poor method in all respects and is not recommended for testing the 
linearity of data or for finding mean values of rate constants. 

Graphical Method of Fitting Data. Actually, the preceding methods do not 
require making a plot of the data to obtain k values. With the graphical method 
the data are plotted and then examined for deviations from linearity. The decision 
whether a straight line gives a satisfactory fit is usually made intuitively by 
using good judgment when looking at the data. When in doubt we should take 
more data. 

The graphical procedure is probably the safest, soundest, and most reliable 
method for evaluating the fit of rate equations to the data, and should be used 
whenever possible. For this reason we stress this method here. 

Figure 3.26 Calculated k values from successive 
experimental points are likely to fluctuate 
widely. 
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RELATED READINGS 

Frost, A. A., and Pearson, R. G., Kinetics and Mechanism, 2nd ed., John Wiley & Sons, 
New York, 1961. 

Laidler, K. J., Chemical Kinetics, 2nd ed., McGraw-Hill, New York, 1965. 

PROBLEMS 

3.1. If -rA = -(dC,ldt) = 0.2 mol/liter.sec when CA = 1 mollliter, what is 
the rate of reaction when CA = 10 mollliter? 
Note: the order of reaction is not known. 

3.2. Liquid A decomposes by first-order kinetics, and in a batch reactor 50% 
of A is converted in a 5-minute run. How much longer would it take to 
reach 75% conversion? 

3.3. Repeat the previous problem for second-order kinetics. 

3.4. A 10-minute experimental run shows that 75% of liquid reactant is con- 
verted to product by a %-order rate. What would be the fraction converted 
in a half-hour run? 

3.5. In a homogeneous isothermal liquid polymerization, 20% of the monomer 
disappears in 34 minutes for initial monomer concentration of 0.04 and 
also for 0.8 mollliter. What rate equation represents the disappearance of 
the monomer? 

3.6. After 8 minutes in a batch reactor, reactant (CAO = 1 mollliter) is 80% 
converted; after 18 minutes, conversion is 90%. Find a rate equation to 
represent this reaction. 

Snake-Eyes Magoo is a man of habit. For instance, his Friday evenings are 
all alike-into the joint with his week's salary of $180, steady gambling at 
"2-up" for two hours, then home to his family leaving $45 behind. Snake 
Eyes's betting pattern is predictable. He always bets in amounts propor- 
tional to his cash at hand, and his losses are also predictable-at a rate 
proportional to his cash at hand. This week Snake-Eyes received a raise 
in salary, so he played for three hours, but as usual went home with $135. 
How much was his raise? 

3.8. Find the overall order of the irreversible reaction 
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from the following constant-volume data using equimolar amounts of hy- 
drogen and nitric oxide: 

Total pressure, mm Hg 200 240 280 320 360 

Half-life, sec 1 265 186 11.5 104 67 

3.9. The first-order reversible liquid reaction 

takes place in a batch reactor. After 8 minutes, conversion of A is 33.3% 
while equilibrium conversion is 66.7%. Find the rate equation for this re- 
action. 

3.10. Aqueous A reacts to form R (A -, R) and in the first minute in a batch 
reactor its concentration drops from CAo = 2.03 mollliter to CAf = 1.97 
mollliter. Find the rate equation for the reaction if the kinetics are second- 
order with respect to A. 

3.11. Aqueous A at a concentration C,, = 1 mollliter is introduced into a batch 
reactor where it reacts away to form product R according to stoichiometry 
A -, R. The concentration of A in the reactor is monitored at various 
times, as shown below: 

t, min 0 100 200 300 400 
CA,mol/m3 1000 500 333 250 200 

For CAo = 500 mol/m3 find the conversion of reactant after 5 hours in the 
batch reactor. 

3.12. Find the rate for the reaction of Problem 11. 

3.13. Betahundert Bashby likes to play the gaming tables for relaxation. He does 
not expect to win, and he doesn't, so he picks games in which losses are 
a given small fraction of the money bet. He plays steadily without a break, 
and the sizes of his bets are proportional to the money he has. If at 
"galloping dominoes" it takes him 4 hours to lose half of his money and 
it takes him 2 hours to lose half of his money at "chuk-a-luck," how long 
can he play both games simultaneously if he starts with $1000 and quits 
when he has $10 left, which is just enough for a quick nip and carfare home? 

3.14. For the elementary reactions in series 

kl k2 CA = CAO, A-R-S, k, = k,, a t t  = 0 
C,, = Cso = 0 

find the maximum concentration of R and when it is reached. 
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3.15. At room temperature sucrose is hydrolyzed by the catalytic action of the 
enzyme sucrase as follows: 

sucrase 
sucrose -products 

Starting with a sucrose concentration CAo = 1.0 millimol/liter and an en- 
zyme concentration CEO = 0.01 millimollliter, the following kinetic data 
are obtained in a batch reactor (concentrations calculated from optical 
rotation measurements): 

Determine whether these data can be reasonably fitted by a kinetic equation 
of the Michaelis-Menten type, or 

-YA = k3 C~ where CM = Michaelis constant 
CA + Chl 

If the fit is reasonable, evaluate the constants k3 and CM. Solve by the 
integral method. 

3.16. Repeat the above problem, except this time solve by the differential 
method. 

3.17. An ampoule of radioactive Kr-89 (half life = 76 minutes) is set aside for 
a day. What does this do to the activity of the ampoule? Note that radioac- 
tive decay is a first-order process. 

3.18. Enzyme E catalyzes the transformation of reactant A to product R as 
follows: 

enzyme 
A-R, - r A =  

200CACEO mol 
2 + CA liter. min 

If we introduce enzyme (CEO = 0.001 mollliter) and reactant (CAo = 10 
mollliter) into a batch reactor and let the reaction proceed, find the time 
needed for the concentration of reactant to drop to 0.025 mollliter. Note 
that the concentration of enzyme remains unchanged during the reaction. 

3.19. Find the conversion after 1 hour in a batch reactor for 

mol 
A-R, -rA = 3Ci5- CAo = I mollliter 

liter hr ' 
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Table P3.20 

t, min 
C,H,SO,H, 
mollliter t, min 

C,H,S04H, 
mollliter 

3.20. M. Hellin and J. C. Jungers, Bull. soc. chim. France, 386 (1957), present 
the data in Table P3.20 on the reaction of sulfuric acid with diethylsulfate 
in aqueous solution at 22.9OC: 

Initial concentrations of H2S04 and (C,H5),SO4 are each 5.5 mollliter. Find 
a rate equation for this reaction. 

3.21. A small reaction bomb fitted with a sensitive pressure-measuring device 
is flushed out and then filled with pure reactant A at 1-atm pressure. The 
operation is carried out at 25OC, a temperature low enough that the reaction 
does not proceed to any appreciable extent. The temperature is then raised 
as rapidly as possible to 100°C by plunging the bomb into boiling water, 
and the readings in Table P3.21 are obtained. The stoichiometry of the 
reaction is 2A -+ B, and after leaving the bomb in the bath over the 
weekend the contents are analyzed for A; none can be found. Find a rate 
equation in units of moles, liters, and minutes which will satisfactorily fit 
the data. 

Table P3.21 

T, min n, atm T, min n-, atm 

1 1.14 7 0.850 
2 1.04 8 0.832 
3 0.982 9 0.815 
4 0.940 10 0.800 
5 0.905 15 0.754 
6 0.870 20 0.728 
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3.22. For the reaction A -+ R, second-order kinetics and C,, = 1 mollliter, we 
get 50% conversion after 1 hour in a batch reactor. What will be the 
conversion and concentration of A after 1 hour if C,, = 10 mollliter? 

3.23. For the decomposition A -+ R, C,, = 1 mollliter, in a batch reactor 
conversion is 75% after 1 hour, and is just complete after 2 hours. Find a 
rate equation to represent these kinetics. 

3.24. In the presence of a homogeneous catalyst of given concentration, aqueous 
reactant A is converted to product at the following rates, and C, alone 
determines this rate: 

C,, mollliter 1 2 4 6 7 9 1 2  
-r,,rnol/liter.hr 0.06 0.1 0.25 1.0 2.0 1.0 0.5 

We plan to run this reaction in a batch reactor at the same catalyst concen- 
tration as used in getting the above data. Find the time needed to lower 
the concentration of A from CAo = 10 mollliter to CAf = 2 mollliter. 

3.25. The following data are obtained at O°C in a constant-volume batch reactor 
using pure gaseous A: 

Time,min 0 2 4 6 8 10 12 14 m 

Partial pressure of A , m  / 760 600 175 390 320 275 240 215 150 

The stoichiometry of the decomposition is A -. 2.5R. Find a rate equation 
which satisfactorily represents this decomposition. 

3.26. Example 3.lc showed how to find a rate equation by using the fractional 
life method where F = 80%. Take the data from that example and find 
the rate equation by using the half-life method. As a suggestion, why not 
take C, = 10, 6, and 2? 

3.27. When a concentrated urea solution is stored it slowly condenses to biuret 
by the following elementary reaction: 

To study the rate of condensation a sample of urea (C = 20 mollliter) is 
stored at 100°C and after 7 hr 40 min we find that 1 mol% has turned into 
biuret. Find the rate equation for this condensation reaction. [Data from 
W. M. Butt, Pak. I. Ch. E., 1, 99 (1973).] 

3.28. The presence of substance C seems to increase the rate of reaction of A 
and B, A + B + AB. We suspect that C acts catalytically by combining 
with one of the reactants to form an intermediate, which then reacts further. 
From the rate data in Table P3.28 suggest a mechanism and rate equation 
for this reaction. 
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Table P3.28 

3.29. Find the first-order rate constant for the disappearance of A in the gas 
reaction 2A + R if, on holding the pressure constant, the volume of the 
reaction mixture, starting with 80% A, decreases by 20% in 3 min. 

3.30. Find the first-order rate constant for the disappearance of A in the gas 
reaction A -+ 1.6R if the volume of the reaction mixture, starting with 
pure Aincreases by 50% in 4 min. The total pressure within the system 
stays constant at 1.2 atm, and the temperature is 25°C. 

3.31. The thermal decomposition of hydrogen iodide 

is reported by M. Bodenstein [Z. phys. chem., 29, 295 (1899)l as follows: 

Find the complete rate equation for this reaction. Use units of joules, moles, 
cm3. and seconds. 


