The reactor cannot
be used because it
will exceed the
specified maximum
temperature

of 585°R.

Sec. 8.6  CSTR with Heal Effects 531

1.0~
0.9
0.8
07}
0.6
0.5

0.4

Conversion, X

0.3
0.2}

.

bl ! 1 L L /! | | (S (| |
535 555 575 595 615 635

T(°R)

Figure E8-8.2  The conversions Xgy and Xy as a function of temperature.

Example 8-9 CSTR with a Cooling Coil

A cooling coil has been located in equipment storage for use in the hydration of
propylene oxide discussed in Example 8-8. The cooling coil has 40 fi? of cooling
surface and the cooling water flow rate inside the coil is sufficiently large that a con-
stant coolant temperature of 85°F can be maintained. A typical overall heat-transfer
coefficient for such a coil is 100 Btu/h-ft>-°F. Will the reactor satisfy the previous
constraint of 125°F maximum temperature if the cooling coil is used?

Solution

If we assume that the cooling coil takes up negligible reactor volume. the conver-
sion calculated as a function of temperature from the mole balance is the same as
that in Example 8-8 [Equation (E8-8.10)].

1. Combining the mole balance, stoichiometry, and rate law, we have, from
Example 8-8,

N = K
MB < - -
I+1k 1+(2.084 X 10'2) exp(—16,306/T)

Tisin °R.

2. Energy balance. Neglecting the work by the stirrer, we combine Equations
(8-27) and (8-50) to write

UA(T,-T)

7 = XIAHRTR) +ACH(T—Tp)] = 20,Cp(T—Ty) (E8-9.1)
Al
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Energy Balance

We can now use the
glass lined reactor

PLE

Living Example Problem

Solving the energy balance for Xgy yields
Et'),CPr(T—- To) + (UA(T—T,)/ F 5]

en = (ES-
&5 —[AH 3 (TQ) + AC,(T - Tp)]
The cooling coil term in Equation (E8-9.2) is
UA _( Btu J (40 ft2) _ 929 B
=2 = - ES-
Fo U0 @0abmolm)  bmol-F &

Recall that the cooling temperature is
T, = 85°F = 545°R
The numerical values of all other terms of Equation (E8-9.2) are identic:

those given in Equation (E8-8.12) but with the addition of the heat exch:
term.

_ 403.3(T— 535) +92.9(T — 545) (E8-
36,400+ 7(T— 528)

XEB

We now have two equations [(E8-8.10) and (E8-9.4)] and two unknowns, X and

The PoLYMATH program and solution to these two Equations (E8-8.10), X
and (E8-9.4). Xgg. are given in Tables E8-9.1 and E8-9.2. The exiting tempera
and conversion are 103.7°F (563.7°R) and 36.4%, respectively, i.e.,

T=564°R and X = 0.36]

TarLe E8-9.1.  PoLyMATH: CSTR WiTH HEAT EXCHANGE

Equations:

Nonlinear equations
[1] f(X) = X-(403.3"(T-535)492.9°(T-545) 36400+ 7"(T-528)) = 0
[2] 6T) = X-tau*k/( 1 +au'k) = 0

Explicit equations
1] tau = 0.1229
2] A = 1696710412
[3] E = 32400
[4] R = 1.987
[5] k = Aexpl-EARTH

Solution output to Polymath program in Table E8-9.1 is shown in Table E8-9.
TabLE E8-9.2.  EXAMPLE 8-8 CSTR wWiTH HEAT EXCHANGE

Variable Value fix)y Ini Guess
X 0.3636087 2.243E-11 0.367

T 563.72893 -5411E-10 564

tau 0.1229

A 1.696E+13
E 3. 24E+04
R 1.987

k 46489843
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8.7 Multiple Steady States

In this section we consider the steady-state operation of a CSTR in which a
first-order reaction is taking place. We begin by recalling the hydrolysis of pro-
pylene oxide, Example 8-8.

If one were to examine Figure E8-8.2, one would observe that if a parame-
ter were changed slightly, the Xgg line could move slightly to the left and there
might be more than one intersection of the energy and mole balance curves.
When more than one intersection occurs, there is more than one set of condi-
tions that satisfy borh the energy balance and mole balance; consequently, there
will be multiple steady states at which the reactor may operate.

We begin by recalling Equation (8-54), which applies when one neglects
shaft work and AC, (i.e.. ACp = 0 and therefore AHy, = AHR,).

—XAHY, = Cpo(1 +x)NT—T,) (8-54)
where
- _Ud
CPOF'AIJ
and
ToFaoCpot UAT, xT,+T,
= & = 8-57
€T TUA+ CpFrg | +x el
Using the CSTR mole balance X= i . Equation (8-54) may be rewritten as
A0
(—raV/Fy ) (—AHR) = Cpo(1 +k)(T—T)) (8-58)

The left-hand side is referred to as the heat-generated term:

G(T) = (—AHR)(—r V/Fag) (8-59)

The right-hand side of Equation (8-58) is referred to as the heat-removed term
(by flow and heat exchange) R(T):

R(T) = Cpy(1+&)(T—T) (8-60)

To study the multiplicity of steady states, we shall plot both R(T') and G(T")
as a function of temperature on the same graph and analyze the circumstances
under which we will obtain multiple intersections of R(T) and G(T).
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8.7.1 Heat-Removed Term, A(7)

Vary Entering Temperature. From Equation (8-60) we see that R(T)
increases linearly with temperature, with slope Cpg(1 + k). As the entering
temperature T is increased, the line retains the same slope but shifts to the
right as shown in Figure 8-14,

R(T)

Increose Tg

T

Figure 8-14 Variation of heat removal line with inlet temperature.

Vary Non-adiabatic Parameter k. If one increases x by either decreasing
the molar flow rate F,, or increasing the heat-exchange area. the slope
increases and the ordinate intercept moves to the left as shown in Figure 8-15,
for conditions of 7,<Tj:

k=0 T.=T,
K=o T; = ;’;
If T, > T, the intercept will move to the right as k increases.
= ®
3 Sl
£
o
Increose x
To To

T

Figure 8-15 Variation of heat removal line with k (k= UA/Cp F)-

B.7.2 Heat of Generation, G(7)

The heat-generated term, Equation (8-59), can be written in terms of
conversion. (Recall: X = —r,VIF,,.)

G(T) = (=AHy, )X (8-61)



Ist-order reaction

2nd-order reaction

Low T

High 7
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To obtain a plot of heat generated, G(T), as a function of temperature, we must
solve for X as a function of T using the CSTR mole balance, the rate law, and
stoichiometry. For example, for a first-order liquid-phase reaction, the CSTR
mole balance becomes

i FAOX= VoCacX
kC, kCyro(1—-X)

Solving for X yields

T
1+ 7k

Substituting for X in Equation (8-61), we obtain

— AHg, Tk

G(T) =
e 1+ 7k

(8-62)

Finally, substituting for k in terms of the Arrhenius equation, we obtain

—AHg tAe ERT

G(T) =
= T oo

(8-63)

Note that equations analogous to Equation (8-63) for G(7') can be derived for
other reaction orders and for reversible reactions simply by solving the CSTR
mole balance for X. For example, for the second-order liquid-phase reaction

yo QUG+ )= ATy, + 1

27kC,q

the corresponding heat generated is

—AHR, [(21C g Ae E/RT+ 1) — [41C, ,Ae E/RT + 1]

G(T) =

(8-64)

At very low temperatures, the second term in the denominator of Equation
(8-63) for the first-order reaction can be neglected so that G(T) varies as

G(T) = —AHg, tAe E/RT
(Recall that AHg, means the heat of reaction is evaluated at Tg.)

At very high temperatures. the second term in the denominator dominates, and
G(T) is reduced to

G(T) = ~AHE,

G(T) is shown as a function of T for two different activation energies, E. in Fig-
ure 8-16. If the flow rate is decreased or the reactor volume increased so as to
increase T, the heat of generation term, G(T'), changes as shown in Figure 8-17.
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High E
- Low E
b= =
(G] o] Increasing T
T T
Figure 8-16 Heat generation curve. Figure 8-17 Variation of heat

generation curve with space-time.

8.7.3 lIgnition-Extinction Curve

The points of intersection of R(T) and G(T) give us the temperature
which the reactor can operate at steady state. Suppose that we begin to feed
reactor at some relatively low temperature, T, . If we construct our G(T) :
R(T) curves, illustrated by curves y and a, respectively, in Figure 8-18, we
that there will be only one point of intersection, point 1. From this point of in
section, one can find the steady-state temperature in the reactor, T, . by follc
ing a vertical line down to the T-axis and reading off the temperature as show1
Figure 8-18.

If one were now to increase the entering temperature to Tp,. the G
curve, v, would remain unchanged, but the R(7') curve would move to the rig
as shown by line b in Figure 8-18, and will now intersect the G(T') at point 2 ;
be tangent at point 3. Consequently, we see from Figure 8-18 that there are 1
steady-state temperatures, T, and 7.3, that can be realized in the CSTR for
entering temperature T,. If the entering temperature is increased to T,
R(T) curve, line ¢ (Figure 8-19), intersects the G(T) three times and there
three steady-state temperatures. As we continue to increase T, we finally re
line e, in which there are only two steady-state temperatures. By further incre
ing T, we reach line f, corresponding to Ty, in which we have only one tem
ature that will satisfy both the mole and energy balances. For the six enter
temperatures, we can form Table 8-3, relating the entering temperature to
possible reactor operating temperatures. By plotting 7, as a function of T},
obtain the well-known ignition-extinction curve shown in Figure 8-20. Fr
this figure we see that as the entering temperature is increased, the steady-s
temperature increases along the bottom line until 7y is reached. Any fractior
a degree increase in temperature beyond T and the steady-state reactor temj
ature will jump up to T,,, as shown in Figure 8-20. The temperature at wk
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Figure 8-18 Finding multiple steady
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TaBLE 8-5.  MULTIPLE STEADY-STATE TEMPERATURES
Entering Reactor
Temperature Temperatures

Tn! rd

Tl): T.: T 1

T;)_l r,J T.i T.«
T T Ty Ty
Tos To T

T T

this jump occurs is called the ignition temperature. If a reactor were operating at
T, and we began to cool the entering temperature down from 7, the
steady-state reactor temperature 7, would eventually be reached. correspond-
ing to an entering temperature T, . Any slight decrease below 7}, would drop
the steady-state reactor temperature to T,,. Consequently, T, is called the
extinction temperature.
The middle points 5 and 8 in Figures 8-19 and 8-20 represent unstable
steady-state temperatures. Consider the heat removal line d in Figure 8-19 along
with the heat-generated curve which is replotted in Figure 8-21.
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Upper steady stoles

€ Unstable
~ steody
“oD stotes

-

3.

Ts

To

Figure 8-20 Temperature ignition-extinction curve.

R(T), G(T)

T

Figure 8-21 Stability on multiple state temperatures.

If we were operating at T, for example, and a pulse increase in reactor
temperature occurred, we would find ourselves at the temperature shown by ver-
tical line @ between points 8 and 9. We see along this vertical line @ the
heat-generated curve, G. is greater than the heat-removed line R (G > R). Conse-
quently, the temperature in the reactor would continue to increase until point 915
reached at the upper steady state. On the other hand, if we had a pulse decreas¢
in temperature from point 8, we would find ourselves a vertical line @ between
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points 7 and 8. Here we see the heat-removed curve is greater than the heat-gen-
erated curve so the temperature will continue to decrease until the lower steady
state is reached. That is a small change in temperature either above or below the
middle steady-state temperature, 7,5 will cause the reactor temperature to move
away from this middle steady state. Steady states that behave in the manner are
said to be unstable.

In contrast to these unstable operating points, there are stable operating
points. Consider what would happen if a reactor operating at T, were subjected
to a pulse increase in reactor temperature indicated by line @ in Figure 8-21. We
see that the heat-removed line (d) is greater than the heat-generated curve (y), so
that the reactor temperature will decrease and return to T,g. On the other hand, if
there is a sudden drop in temperature below 7, as indicated by line @, we see
the heat-generated curve (y) is greater than the heat-removed line (d) and the
reactor temperature will increase and return to the upper steady state at 7.

Next let’s look at what happens when the lower steady-state temperature
at T; is subjected to pulse increase to the temperature shown as line @ in Fig-
ure 8-21. Here we again see that the heat removed, R, is greater than the heat
generated, G, so that the reactor temperature will drop and return to T,y If
there is a sudden decrease in temperature below T, to the temperature indi-
cated by line @, we see that the heat generated is greater than the heat
removed, G > R, and that the reactor temperature will increase until it returns
to 7y;. A similar analysis could be carried out for temperature T}, Tis, Ty Ti6r
T, and T, and one would find that reactor temperatures would always
return to local steady-state values, when subjected to both positive and nega-
tive fluctuations.

While these points are locally stable, they are not necessarily globally
stable. That is, a perturbation in temperature or concentration, while small,
may be sufficient to cause the reactor to fall from the upper steady state (cor-
responding to high conversion and temperature such as point 9 in Figure 8-21)
to the lower steady state (corresponding to low temperature and conversion,
point 7). We will examine this case in detail in Section 9.4 and in Problem
P9-164.

An excellent experimental investigation that demonstrates the multiplic-
ity of steady states was carried out by Vejtasa and Schmitz (Figure 8-22). They
studied the reaction between sodium thiosulfate and hydrogen peroxide:

2Na,S,0; + 4H,0, - Na,S,0, + Na,SO, + 4H,0

in a CSTR operated adiabatically. The multiple steady-state temperatures were
examined by varying the flow rate over a range of space times, T, as shown in
Figure 8-23. One observes from this figure that at a space-time of 12 s,
steady-state reaction temperatures of 4, 33, and 80°C are possible. If one were
operating on the higher steady-state temperature line and the volumetric flow
rates were steadily increased (i.e.. the space-time decreased), one notes that if
the space velocity dropped below about 7 s, the reaction temperature would drop
from 70°C to 2°C. The flow rate at which this drop occurs is referred to as the
blowout velocitv.
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Figure 8-22 Heat generation and removal  Figure 8-23 Multiple steady states.

functions for feed mixture of 0.8 M Na,S,0;
and 1.2 M H,0,; a1 0°C.

By S. A. Vejiasa and R. A. Schmitz, AIChE J., 16 (3). 415 (1970). (Reproduced by
permission of the American Institute of Chemical Engineers. Copyright © 1970
AIChE. All right reserved.) See Journal Critique Problem P8C-4.

8.7.4 Runaway Reactions in a CSTR

In many reacting systems, the temperature of the upper steady state ma:
sufficiently high that it is undesirable or even dangerous to operate at this «
dition. For example, at the higher temperatures, secondary reactions can
place, or as in the case of propylene glycol in Examples 8-8 and 8-9, evap
tion of the reacting materials can occur.

We saw in Figure 8-20, that we operated at the upper steady state :
we exceeded the ignition temperature, For a CSTR, we shall consider runa
(ignition) to occur when we move from the lower steady state to the uj
steady state. The ignition temperature occurs at the point of tangency of
heat removed curve to the heat-generated curve. If we move slightly off
point of tangency as shown in Figure 8-24, then runaway is said to |
occurred.

At this point of tangency, 77, we have not only

R(T")=G(T)

(=r¥) @8

Cp (1 +K)NT" = Tc) = (~AHR)X = (—AHy,) Z
AD
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R(T), G(T)

=98 _Coq (14 ¢
Slope-d_r_ PO )

T T

Figure 8-24 Runaway in a CSTR.

but also the slopes of the R(T) and G(T) curves are also equal. For the
heat-removed curve, the slope is

dR(T)

| = Call+x) (8-66)

o

and for the heat-generated curve, the slope is

=rA¥
dG(n| _ {(—AH"“) Fu ]
ar | dT |T,

(=AH )\d(=r,)|
- 8-67
( P ) ar |, Ll

Assuming that the reaction is irreversible and follows a power law model and
that the concentrations of the reacting species are weak functions of temperature,

=Fa = (A{’—EMIT) fn(C,) (8-68)
then
d(_r ) E -y E .
—aﬁ'ﬁ e AR G = = =)
+ RT RT

Substituting for the derivative of (-»,) wrt T in Equation (8-67)

G(T)
————
—-A . .
dG(D) (AR _opy | E _ gir') £ (8-69)
dT r Fao RT* RT*
dG(T)| _ ('3
dT |
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where

s = G(T) =
RT™

Equating Equations (8-66) and (8-69) yields
G(T)

e
Cro(1+1) = Lo (=ripy 2w
RT" Fro

=g

(8-70)
§'= -E—zo( T
R

Next, we divide Equation (8-65) by Equation (8-70) to obtain the follow-
ing AT value for a CSTR operating at T = T7;

-

AT, =T —7,=RL (8-71)
E

If this difference between the reactor temperature and T,, AT, is exceeded,

transition to the upper steady state will occur. For many industrial reactions,

E/RT is typically between 16 and 24. and the reaction temperatures may be

between 300 to 500 K. Consequently, this critical temperature difference AT,

will be somewhere around 15 to 30°C.

Stability Diagram. We now want to develop a stability diagram that will
show regions of stable operation and unstable operation. One such diagram
would be a plot of §” as a function of 7. To construct this plot, we first solve
Equation (8-71) for 77, the reactor temperature at the point of tangency,

= 5‘%[1— /1 —4%] (8-72)

_KTa+TlI
I +k

and recalling

¢

We can now vary T.. then calculate 7" [Equation (8-72)], calculate &
(k" = Ae"ERT"), calculate —r", at T° from rate law, calculate G(T") [Equation
(8-59)]. and then finally calculate S* to make a plot of S* as a function of T, a$
shown in Figure 8-25. We see that any deviation to the right or below the inter-
section of Cpq (1 + k) and §” will result in runaway.
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Figure 8.25 CSTR suability diagram,

For example, for a first-order reaction, the equation for S” is

—E/RT”
- (....7'4_"_._,]( -A HRJL,
\ 7 RT?

So

1+ tde %

543

(8-73)

We simply combine Equation (8-72) and the equation for 7, and then substi-
tute the result into Equation (8-73) and plot S as a function of T;,. From Figure
8-25, we see that for a given value of [Cpy(14k)), if we were to increase the
entering temperature 7, from some low-value Ty (7,,) to a higher entering
temperature value Ty, (7). we would reach a point at which runaway would
occur, Further discussions are given on the CD-ROM professional reference
shelf R8.2. Referring to Equation (8-70), we can infer

Cpo(1 +k)>S

(8-74)

we will not move to the upper steady state, and runaway will not occur. How-

ever, if

runaway will occur.

Cpu(l + k) <S.

8.8 Nonisothermal Multiple Chemical Reactions

(8-75)

Most reacting systems involve more than one reaction and do not operate iso-
thermally. This section is one of the most important sections of the book. It
ties together all the previous chapters to analyze multiple reactions that do not

take place isothermally.
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8.8.1 Energy Balance for Multiple Reactions in Plug-Flow React:

In this section we give the energy balance for multiple reactions. We begi
recalling the energy balance for a single reaction taking place in a PFR w
is given by Equation (8-35),

dT _ Ua(T, = T)+ (=ry) [~ At (T)]
dv

(¢

Y FCp

i=1

When ¢ multiple reactions are taking place in the PFR and there are m
cies, it is easily shown that Equation (8-35) can be generalized to

q
Ua(T,=T)+ > (—ryl—AHg,; (1))

Energy balance for
multiple reactions

i = Reaction number

dr _ st (s
dv m

D FiCe,

j=1

The heat of reaction for reaction i must be referenced to the same species i

j= Species
rate, r;;, by which AHg,;; is multiplied, that is,
Moles of j reacted in reaction i Joules “released” in reactio
[=ryl(—AHpgyl = Volume - time X| Moles of j reacted in reactia

Joules “‘released” in reaction {
i Volume - time

where the subscript j refers to the species, the subscript / refers to the parti
reaction, ¢ is the number of independent reactions, and m is the numb
species.

Consider the following reaction sequence carried out in a PFR:

Reaction 1: A—25B ¢
. Reaction 2: B ek € (

The PFR energy balance becomes

dT _ Ua(T,—T) + (—rn)(—AHgy ) T (—r2p)(— AHg.as)

av FiCra* EyCon+ FCrg (

where AHy,,, = [kJ/mol of A reacted in reaction 1] and
AHg,,s = [kJ/mol of B reacted in reaction 2].
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Example 810 Parallel Reactions in a PFR with Heat Effects

The following gas-phase reactions occur in a PFR:

Reaction I: A —23 B —p, = k,,Cs (E8-10.1)
Reaction2: 2A —=— C —rys = km('i (E8-10.2)

Pure A is fed at a rate of 100 mol/s. a temperature of 150°C, and a concentration of
0.1 mol/dm?*, Determine the temperature and flow rate profiles down the reactor.

Additional information:

AHg, 4 = —20,000 J/(mol of A reacted in reaction 1)
AHg, .4 = —60,000 J/(mol of A reacted in reaction 2)

[Ef 1 _af]..
=0 / w3 G = =i o RS L
Cp, =90 J/mol-°C kia erxp|.R(300 T]J]s
CPB=9OJ.fm0]‘°C E/R=4000 K
Eyf 1 1|} dm?
=] / .9 n =0 Vi
C“’c 80 I/mol-°C ks OOQexp[R (300 Tﬂmol-s
Ua =4000J/m?-s-°C Es/R=9000 K
T,= 100°C
Solution

The PFR energy balance becomes [cf. Equation (8-76)]

ar _ Ua(T, = T) + (= r i )(—AHga) +( — A= AHg,24)

E8-10.3
av FaCps+ FgCpp+ FcCpc ( ]
Mole balances:
dF, _
v - A (E8-10.4)
dF;
}—VE =ry (E8-10.5)
dF,
,Txf =re (E8-10.6)
Rate laws, relative rates, and net rates:
Rate laws
ria = —ksCy (E8-10.1)

Faa = =k Cy (E8-10.2)
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Relative rates

. r r
Reaction 1: _’—’; = —;9 s rig=—ria=kixCa
Reaction 2: L7 L T, e kz_;\cz

= 1 ¢ P 2A 2 A
Net rates:

r*=rj‘\+rn=‘*k|*c4“kuci

rg =rip=k;zCy
re =re= L k2
st ol L T

Stoichiometry (gas phase AP = 0):

el
sl
ool

1 1|l dm?
ko =0 e
24 09 exp[%ﬂﬂ [3 TH e

Energy balance:
dT _ 4000373 = T) + (=r,,)(20,000) + (~r1,)(60.000)
dv 90F, +90Fy + 180F

Figures E8-10.1 and E8-10.2.

Chap. B

(E8-10.7)
(E8-10.8)

(E8-10.9)

(E8-10.10)

(E8-10.11)

(E8-10.12)

(E8-10.13)

(Tin K)

(E8-10.14)

The Polymath program and its graphical outputs are shown in Table E8-10.1 and
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TaBLE E8-10.1. POLYMATH PROGRAM

Equations:

H ul
Example 8-10 Parallel Reaction in a PFR with Heat Effects 08-13-2004, Rov$.1.232
Calculated values of the DEQ variables
variable 4injtial value minimal value maximal value final value
v o 1 1
Fa 100 2.7382-06 100 2.738E-06
Fb 0 0 55.04326 55.04326
Fc - 0 ] 22.478369 22.4781€9
T 423 423 812.19122 722.08816
kla 482.8247 482.8247 4. 4B4E+D4 2.426E+04
k2a 553.05566 §53.05566 1.4BE+07 3.716E+06
Cto 0.1 0.1 0.1 0.1
Ft 100 77.521631 100 77.521631
To 423 423 423 423
Ca 0.1 2.069E-09 0.1 1.069E-09
Ccb [\] 0 0.0415541 0.0415941
Cec Q ] 0.016986 0.016986
rla -48.28247 ~373.3%077 ~5.019E-05 =5.019E-05
r2a =-5.5305566 ~848.11153 =1.591E-11 -1.591E-11
ODE Report (RKF45)
Ditferential equati d by the user

B8
(3] d{Fe)d(V)=rla+r2a

121 diFbYd(V) = -ria

13] d(Feyd(V) = -r2a/2

141 d(TW(V) = (4000°(373-T)+(-r12)"20000+{-r2a) ‘60000)/(80"F a+90"Fb+180"Fc)

Explicit equations as entered by the user
[1] kia=10"exp{4000*(1/30C-1/T))
121 k2a = 0.08"axp(9000*(1/300- 1/T))
11} Clo=0.1
14] Fi=FaeFbeFc
151 To=423
16] Ca = Cto*(Fa/F1)*(To/T)

(71 Cb = Cie*(Fb/Ft)*(To/T)
[8] Cc = Cto*(Fc/FI)"(To/T)
{9} nMa=-kia*Ce

{10) r2a=-k2a*Ca*2

W0 e R
80 F g
L T
— \
1:‘_ s Iplau r ’jll
‘“‘F P | Fe
0 LNl kel

Figure E8-10.1 Temperature profile. Figure E8-10.2  Profile of molar flow rates

Fy.Fy.and F..
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8.8.2 Energy Balance for Multiple Reactions in CSTR
Recall that —Fy,X = r,V for a CSTR and that AH, (T) = AHg, +ACH(T—

so that Equation (8-27) for the steady-state energy balance for a single reac
may be written as

Q—Wi—Fy 20,Cp (T—Ty) + [AHg (D] [r V] =0 (8-

For g multiple reactions and m species, the CSTR energy balance becomes

m q
Q- We=Fuo 3 O,Cp (T-T)+V 3 ry AHp, (T)=0| (8-

=1 i=1

Substituting Equation (8-50) for Q, neglecting the work term, and assum
constant heat capacities, Equation (8-80) becomes

Major goal
of CRE

m i
UA(T,~T)—=Fpp . CpO(T—Tp)+V > ry AHg, ,(T) =0| (8-

= i=1

For the two parallel reactions described in Example 8-10, the CSTR ene
balance is

UA(T, — T}—F_WE (':),-CPI_(T— To) + Vria AHg a(T) + Vrag AHp A (T) =
i=1

(8-

One of the major goals of this text is to have the reader solve problems invc
ing multiple reactions with heat effects (cf. Problem P8-26¢).

Example 8-11 Multiple Reactions in a CSTR
The elementary liquid-phase reactions
k, k;
A—B——C

take place in a 10-dm® CSTR. What are the effluent concentrations for a volume
feed rate of 1000 dm*/min at a concentration of A of 0.3 mol/dm??

The inlet temperature is 283 K.
Additional information:
C'PA = C'PB - C'PC = 200 J/mol-K
k, = 3.3 min~' at 300 K, with E, = 9900 cal/mol
ky = 4.58 min~! at 500 K, with E, = 27,000 cal/mol
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AHpg a4 = —55,000 J/mol A UA = 40,000 J/min-K with T, = 57°C
AHpap = —71.500 J/mol B

Solution
The reactions follow elementary rate laws

Na=—kiaCa
rip =—ksCp

1. Mole Balance on Every Species
A: Combined mole balance and rate law for A:

Fro— FA = Up[Cra— Cal o Ug[Cro—Cal

V= (E8-11.1)
—Fa ~Fia kC,y
Solving for C, gives us
Cao
T s (E8-11.2
A1+ ]
B: Combined mole balance and rate law for B:
V = 0 o CBU“ = CBUIJ - CB”"U {EB-] ]3)
—rg (rng+ryp) KCy—kCy
Solving for Cy yields
™k, C, Th, Cag
= = E8-11.4)
B N4k, (1+ k(1 + Thy) (
2. Rate Laws:
T _ kiCy
ra=kCy= T (E8-11.5)
kytk, C
—ryg = Gy = e AT E8-11.6
"8 = 5258 T (1 + ) ( :

3. Energy Balances:
Applying Equation (8-82) to this system gives

VAT, = T) = FoCp (T~ Ty) + V[r,y AHgqp+rip AHgypp) =0 (ES-11.7)

Substituting for ry, and r.y and rearranging, we have

G(T)
B R(T)
_AHgaThy _ Tk Thy AHy0p
[ T+ek, (et | - ORIl (Es-118)
= Ud _ 40,000 J/min-K = 0.667

~ FaCp, (0.3 mol/dm?)(1000 dm’/min) 200 J/ mol - K
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7 = TotxT, _ 283 +(0.666)(330)

o T+0.667 =301.8K (ES-11.9)
AHg ATk, Tk, Thy AHp, 05

G =] - = Ll ES-11.10

) [ T+tk, (1 + k(1 + 7hy) ¢ .

R(T)= Cp(1+x)[T-T,] (E8-11.11)

We are now going to write a Polymath program to increment temperature to obtain
G(T) and R(T). The Polymath program to plot R(T) and G(T) vs. T is shown in
Table E8-11.1, and the resulting graph is shown in Figure E8-11.1.

TaBLE EB-11.1. POLYMATH

Equations:

POLYMATH Resul

Example 8-11 Multiple Reactions in a CSTR 08-13-2004, Rev5.1.232
ODE Report (RKF45)

Differential equations as entered by the user
[1) d(T)d(t)=2

Explicit equations as entered by the user
[1] Cp=200
{2) Cao=0.3
[3] To=283
[4] tau=.01
[5] DH1=-55000
[6] DH2=-71500
[7) vo=1000
[8] E2=27000
(9] E1=9900
{10] UA = 40000
{11] Ta=330
(12] k2 =4.58"exp((E2/1.987)"(1/500-1/T))
[13] k1 =3.3%exp((E1/1.987)%(1/300-1/T))
f14) Ca = Caol(1+tau'ki)
[15] kappa = UA/(vo*Cao)/Cp
[16) G =-tau'k1/(1+k1*tau)*'DH1-k1*tau*k2*"tau"DH2/((1+tau"k1)*(1+tau'k2))
{171 Te=(To+kappa'Ta)/(1+kappa)
{18] Cb =tau'ki*Ca/(1+k2"tau)
{12] R=Cp*(1+kappa)*(T-Tc)
[20] Cc=Cao-Ca-Cb
{z1] F=G-R

We see that five steady states (SS) exist. The exit concentrations and tempera-

tures listed in Table E8-11.2 were interpreted from the tabular output of the Polymath
program,



