
Chapter 12 

Compartment Models 

Flow models can be of different levels of sophistication and the compartment 
models of this chapter are the next stage beyond the very simplest, those that 
assume the extremes of plug flow and mixed flow. In the compartment models 
we consider the vessel and the flow through it as follows: 

I V,-plug flow region 
Total V,-active volume 

volume - - . V,-mixed flow region 

[v,-dead or stagnant region within the vessel 

v,-active flow, that through the plug and mixed flow regions 
Total 

throughflow . . . v,-bypass flow 
v v,-recycle flow 

By comparing the E curve for the real vessel with the theoretical curves for 
various combinations of compartments and throughflow, we can find which model 
best best fits the real vessel. Of course, the fit will not be perfect; however, 
models of this kind are often a reasonable approximation to the real vessel. 

Figure 12.1, on the next few pages, shows what the E curves look like for 
various combinations of the above elements-certainly not all combinations. 

Hints, Suggestions, and Possible Applications 

(a) If we know M (kilograms of tracer introduced in the pulse) we can make 
a material balance check. Remember that M = v (area of curve). However, 
if we only measure the output C on an arbitrary scale, we cannot find M 
or make this material balance check. 

283 
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Ideal pulse, height is 

Area = I Area = 1 h 

r Mixed 

Area = 2 

I A r e a  1 -1 

'L Mixed 

Figure 12.1 Various compartment flow models. 
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Figure 12.1 (Continued) 
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Figure 12.1 (Continued) 
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log C 

Initial slope = - -= 
log A 

A Slope = - - 
Equivalent - (log A) - 1 

A - 
e 
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log C 

Slope = - - 

Figure 12.2 Properties of exponential decay tracer curves. 

(b) We must know both V and v if we want to properly evaluate all the 
elements of a model, including dead spaces. If we only measure jobs, we 
cannot find the size of these stagnant regions and must ignore them in 
our model building. Thus 

If the real vessel - 

- 

- v 
tabs < 2 t =-  

has dead spaces: v 
. . - where 

If the real vessel - - vw, 
has no dead spaces: tabs = tabs = - v 

(c) The semilog plot is a convenient tool for evaluating the flow parameters 
of a mixed flow compartment. Just draw the tracer response curve on this 
plot, find the slope and intercept and this gives the quantities A, B, and 
C,  as shown in Fig. 12.2. 

Diagnosing Reactor Ills 

These combined models are useful for diagnostic purposes, to pinpoint faulty 
flow and suggest causes. For example, if you expect plug flow and you know 
i = Vlv, Fig. 12.3 shows what you could find. 

If you expect mixed flow, Fig. 12.4 shows what you may find. 
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Slim trim curve means Early curve is a sure sign Multiple decaying peaks at regular 
reasonably good flow of stagnant backwaters intervals indicate strong 

internal recirculation 

Mean is too early 
C 

t 

Double peaks come from flow Late curve 
in parallel paths, channeling Late tracer is puzzling. Material balance 

says i t  can't happen so the only 
explanations are: . u or v are incorrectly measured 

(check flow meters, etc.) 
C C tracer is not inert (adsorbs on 

surface? Try a different one) 
the closed vessel assumption is 
far from satisfied. 

. - 
tabs 

Figure 12.3 Misbehaving plug flow reactors. 

Reasonably good flow Time lag means plug flow Slow internal circulation suggests 
in series with mixed flow sluggish slow turnover of fluid 

Inadequate mixing 
Draft tube effect 

C 

t 

Early curve means Late curve means either incorrect Sharp early peak 
v or V or noninert tracer 

from inlet to outlet 

C 

. - t 
t tabs 

Figure 12.4 Misbehaving mixed flow reactors. 
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BEHAVIOR OF A G/L CONTACTOR 

From the measured pulse tracer response curves (see figure), find the fraction 
of gas, of flowing liquid, and of stagnant liquid in the gas-liquid contactor shown 
in Fig. E12.1. 

20 rn 

t, sec t, sec 

Figure E12.1 

To find V,, V,, and V,,,,, first calculate j, and j, from the tracer curves. Thus 
from Fig. E12.1 

and 
- 
t1 = 40 s. 

Therefore 

V, = j,v, = (10)(0.5) = 5m3 

Vl = jlv, = 40(0.1) = 4m3 

In terms of void volume 

% stagnant = 10%) 
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At present our 6-m3 tank reactor gives 75% conversion for the first order reaction 
A-R. However, since the reactor is stirred with an underpowered paddle 
turbine, we suspect incomplete mixing and poor flow patterns in the vessel. A 
pulse tracer shows that this is so and gives the flow model sketched in Fig. E12.2. 
What conversion can we expect if we replace the stirrer with one powerful 
enough to ensure mixed flow? 

Deadwater 

Figure E12.2 

Let subscript 1 represent today's reactor and subscript 2 represent the cured 
reactor. At present, from Chapter 5 for the MFR, we have 

But k7, = 3 kr, = 3 X 3 = 9 

Therefore 
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PROBLEMS 

12.1. to 12.6. A pulse of concentrated NaCl solution is introduced as tracer into 
the fluid entering a vessel (V = 1 m3, v = 1 m3/min) and the concentration of 
tracer is measured in the fluid leaving the vessel. Develop a flow model 
to represent the vessel from the tracer output data sketched in Figs. P12.1 
to P12.6. 

t. rnin 

t, min 

t ,  sec 

Figures P12.1 through P12.6 

t ,  rnin 

t ,  sec 

r Area = 

t, sec 

12.7. to 12.10. A step input tracer test (switching from tap water to salt water, 
measuring the conductivity of fluid leaving the vessel) is used to explore 
the flow pattern of fluid through the vessel (V = 1 m3, v = 1 m3/min). 
Devise a flow model to represent the vessel from the data of Figs. P12.7 
to P12.10. 
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t ,  rnin 

9 
C 
4 

40 
t, sec t, sec 

Figures P12.7 through P12.10 

12.11. The second order aqueous reaction A + B + R + S is run in a large tank 
reactor (V = 6 m3) and for an equimolar feed stream (C,, = C,,) conver- 
sion of reactants is 60%. Unfortunately, agitation in our reactor is rather 
inadequate and tracer tests of the flow within the reactor give the flow 
model sketched in Fig. P12.11. What size of mixed flow reactor will equal 
the performance of our present unit? 

Figure P12.11 Figure Pl2.12 

12.12. Repeat Example 12.2 with one change: The model for the present flow 
is as shown in Fig. P12.12. 



Chapter 13 

The Dispersion Model 

Choice of Models 

Models are useful for representing flow in real vessels, for scale up, and for 
diagnosing poor flow. We have different kinds of models depending on whether 
flow is close to plug, mixed, or somewhere in between. 

Chapters 13 and 14 deal primarily with small deviations from plug flow. There 
are two models for this: the dispersion model and the tanks-in-series model. Use 
the one that is comfortable for you. They are roughly equivalent. These models 
apply to turbulent flow in pipes, laminar flow in very long tubes, flow in packed 
beds, shaft kilns, long channels, screw conveyers, etc. 

For laminar flow in short tubes or laminar flow of viscous materials these 
models may not apply, and it may be that the parabolic velocity profile is the 
main cause of deviation from plug flow. We treat this situation, called the pure 
convection model, in Chapter 15. 

If you are unsure which model to use go to the chart at the beginning of 
Chapter 15. It will tell you which model should be used to represent your setup. 

13.1 AXIAL DISPERSION 

Suppose an ideal pulse of tracer is introduced into the fluid entering a vessel. 
The pulse spreads as it passes through the vessel, and to characterize the spreading 
according to this model (see Fig. 13.1), we assume a diffusion-like process super- 
imposed on plug flow. We call this dispersion or longitudinal dispersion to distin- 
guish it from molecular diffusion. The dispersion coefficient D (m2/s) represents 
this spreading process. Thus 

large D means rapid spreading of the tracer curve 
small D means slow spreading 
D = 0 means no spreading, hence plug flow 

Also 

(s) is the dimensionless group characterizing the spread in the whole vessel. 



294 Chapter 13 The Dispersion ,Wodel 

The pulse starts spreading and this can be 
A pulse of tracer caused by many things: velocity profile, 

at time t = 0 turbulent mixing, molecular diffusion, etc. 

Symmetrical and gaussian 

Pulse input 
(8-input) 

Measurement 
point 

Figure 13.1 The spreading of tracer according to the dispersion model. 

We evaluate D or DIuL by recording the shape of the tracer curve as it passes 
the exit of the vessel. In particular, we measure 

t = mean time of passage, or when the curve passes by the exit 

v2 = variance, or a measure of the spread of the curve 

These measures, t and v2, are directly linked by theory to D and DIuL. The 
mean, for continuous or discrete data, is defined as 

The variance is defined as 

or in discrete form 

The variance represents the square of the spread of the distribution as it passes 
the vessel exit and has units of (time)2. It is particularly useful for matching 
experimental curves to one of a family of theoretical curves. Figure 13.2 illustrates 
these terms. 
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Figure 13.2 

Consider plug flow of a fluid, on top of which is superimposed some degree 
of backmixing, the magnitude of which is independent of position within the 
vessel. This condition implies that there exist no stagnant pockets and no gross 
bypassing or short-circuiting of fluid in the vessel. This is called the dispersed 
plug flow model, or simply the dispersion model. Figure 13.3 shows the conditions 
visualized. Note that with varying intensities of turbulence or intermixing the 
predictions of this model should range from plug flow at one extreme to mixed 
flow at the other. As a result the reactor volume for this model will lie between 
those calculated for plug and mixed flow. 

Since the mixing process involves a shuffling or redistribution of material either 
by slippage or eddies, and since this is repeated many, many times during the 
flow of fluid through the vessel we can consider these disturbances to be statistical 
in nature, somewhat as in molecular diffusion. For molecular diffusion in the 
x-direction the governing differential equation is given by Fick's law: 

where a, the coefficient of molecular diffusion, is a parameter which uniquely 
characterizes the process. In an analogous manner we may consider all the 
contributions to intermixing of fluid flowing in the x-direction to be described 

Flat velocity 

Plug flow 

Fluctuations due to different flow 
velocities and due to molecular 

and turbulent diffusion x Dispersed plug flow 

Figure 13.3 Representation of the dispersion (dispersed plug 
flow) model. 
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by a similar form of expression, or 

where the parameter D, which we call the longitudinal or axial dispersion coefi- 
cient, uniquely characterizes the degree of backmixing during flow. We use the 
terms longitudinal and axial because we wish to distinguish mixing in the direction 
of flow from mixing in the lateral or radial direction, which is not our primary 
concern. These two quantities may be quite different in magnitude. For example, 
in streamline flow of fluids through pipes, axial mixing is mainly due to fluid 
velocity gradients, whereas radial mixing is due to molecular diffusion alone. 

In dimensionless form where z = (ut + x)lL and I3 = tlt = tulL, the basic 
differential equation representing this dispersion model becomes 

where the dimensionless group (s), called the vessel dispersion number, is 

the parameter that measures the extent of axial dispersion. Thus 

D 
- + 0 negligible dispersion, hence plug flow 
UL 

D - 
U L +  

large dispersion, hence mixed flow 

This model usually represents quite satisfactorily flow that deviates not too 
greatly from plug flow, thus real packed beds and tubes (long ones if flow 
is streamline). 

Fitting the Dispersion Model for Small Extents of Dispersion, DIuL < 0.01 

If we impose an idealized pulse onto the flowing fluid then dispersion modifies 
this pulse as shown in Fig. 13.1. For small extents of dispersion (if DIuL is small) 
the spreading tracer curve does not significantly change in shape as it passes the 
measuring point (during the time it is being measured). Under these conditions 
the solution to Eq. 6 is not difficult and gives the symmetrical curve of Eq. 7 
shown in Figs. 13.1 and 13.4. 

This represents a family of gaussian curves, also called error or Normal curves. 
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Shaded area = 0.68 

At this value of DIuL the 
tracer curve is becoming 

0.9 1 .O 1.1 t V 

Figure 13.4 Relationship between DIuL and the dimensionless E, curve for small 
extents of dispersion, Eq. 7. 

The equations representing this family are 

E , = ; . E =  

4DLlu 

- V L  t E = v = u  or GE=l  

I 
-mean of E curve 

2 

cT - - 2  or 

Note that DIuL is the one parameter of this curve. Figure 13.4 shows a number 
of ways to evaluate this parameter from an experimental curve: by calculating 
its variance, by measuring its maximum height or its width at the point of 
inflection, or by finding that width which includes 68% of the area. 
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Figure 13.5 Illustration of additivity of means and of variances of the E curves of vessels 
a , b , .  . . ,n .  

2 rva r u , 2  un 7, 

u$verall \ 
I I )' Atfa&.- 

Also note how the tracer spreads as it moves down the vessel. From the 
variance expression of Eq. 8 we find that 

width of tracer 
a2 K L or ( curve 

Vessel n t 

Fortunately, for small extents of dispersion numerous simplifications and ap- 
proximations in the analysis of tracer curves are possible. First, the shape of the 
tracer curve is insensitive to the boundary condition imposed on the vessel, 
whether closed or open (see above Eq. 11.1). So for both closed and open vessels 
Cpulse = E and C,,,, = F. 

For a series of vessels the t and u2 of the individual vessels are additive, thus, 
referring to Fig. 13.5 we have 

... 

and 

- 

The additivity of times is expected, but the additivity of variance is not generally 
expected. This is a useful property since it allows us to subtract for the distortion 
of the measured curve caused by input lines, long measuring leads, etc. 

This additivity property of variances also allows us to treat any one-shot tracer 
input, no matter what its shape, and to extract from it the variance of the E 
curve of the vessel. So, on referring to Fig. 13.6, if we write for a one-shot input 

b Vessel a 

b ~ n ~  input 

c 

Figure 13.6 Increase in variance is the same in both cases, or u2 = a:,, - uin = Au2. 
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Aris (1959) has shown, for small extents of dispersion, that 

a2 - 2 
out (Tin - A(+' - 

(tout - tin)' (Aj>2 

Thus no matter what the shape of the input curve, the DIuL value for the vessel 
can be found. 

The goodness of fit for this simple treatment can only be evaluated by compari- 
son with the more exact but much more complex solutions. From such a compari- 
son we find that the maximum error in estimate of DIuL is given by 

D 
error < 5% when - < 0.01 

uL 

D 
Large Deviation from Plug Flow, - > 0.01 

UL 

Here the pulse response is broad and it passes the measurement point slowly 
enough that it changes shape-it spreads-as it is being measured. This gives a 
nonsymmetrical E curve. 

An additional complication enters the picture for large DIuL: What happens 
right at the entrance and exit of the vessel strongly affects the shape of the tracer 
curve as well as the relationship between the parameters of the curve and DIuL. 

Let us consider two types of boundary conditions: either the flow is undisturbed 
as it passes the entrance and exit boundaries (we call this the open b.c.), or you 
have plug flow outside the vessel up to the boundaries (we call this the closed 
b.c.). This leads to four combinations of boundary conditions, closed-closed, 
open-open, and mixed. Figure 13.7 illustrates the closed and open extremes, 
whose RTD curves are designated as E,, and E,,. 

Now only one boundary condition gives a tracer curve which is identical to 
the E function and which fits all the mathematics of Chapter 11, and that is the 
closed vessel. For all other boundary conditions you do not get a proper RTD. 

In all cases you can evaluate DIuL from the parameters of the tracer curves; 
however, each curve has its own mathematics. Let us look at the tracer curves 
for closed and for the open boundary conditions. 

Closed vessel m Open vessel D 
Plug flow, Same D 

D = O  everywhere 

f -I+ fl  --A++ 

-1- -,v -?-- --3 - + 
t I t I 

Change in flow pattern Undisturbed flow at 
at boundaries boundaries 

Figure 13.7 Various boundary conditions used with the dispersion model. 
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"small deviation" 

Figure 13.8 Tracer response curves for closed vessels and large deviations 
from plug flow. 

Closed Vessel. Here an analytic expression for the E curve is not available. 
However, we can construct the curve by numerical methods, see Fig. 13.8, or 
evaluate its mean and variance exactly, as was first done by van der Laan 
(1958). Thus 

Open Vessel. This represents a convenient and commonly used experimental 
device, a section of long pipe (see Fig. 13.9). It also happens to be the only 
physical situation (besides small DIuL) where the analytical expression for the 
E curve is not too complex. The results are given by the response curves shown 
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Introduce 

I 
Measure 

A 

A squirt of tracer across the Measure the intensity of light 
cross section, or a flash of by "looking through the wall" 
radiation to light sensitive or measure conductivity with 
fluid, etc. a small probe, etc. 

Figure 13.9 The open-open vessel boundary condition. 

in Fig. 13.10, and by the following equations, first derived by Levenspiel and 
Smith (1957). 

1 
E @ , ~ ~  = V ~ T ( D / ~ L )  

open-open -2 
vessel 

Comments 

(a) For small DIuL the curves for the different boundary conditions all ap- 
proach the "small deviation" curve of Eq. 8. At larger DIuL the curves 
differ more and more from each other. 

(b) To evaluate DIuL either match the measured tracer curve or the measured 
u2 to theory. Matching u2 is simplest, though not necessarily best; however, 
it is often used. But be sure to use the right boundary conditions. 

(c) If the flow deviates greatly from plug (DIuL large) chances are that the 
real vessel doesn't meet the assumption of the model (a lot of independent 
random fluctuations). Here it becomes questionable whether the model 
should even be used. I hesitate when DIuL > 1. 

(d) You must always ask whether the model should be used. You can always 
match u2 values, but if the shape looks wrong, as shown in the accompa- 
nying sketches, don't use this model, use some other model. 
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Figure 13.10 Tracer response curves for "open" vessels having large deviations 
from plug flow. 

(e) For large DIuL the literature is profuse and conflicting, primarily because 
of the unstated and unclear assumptions about what is happening at the 
vessel boundaries. The treatment of end conditions is full of mathematical 
subtleties as noted above, and the additivity of variances is questionable. 
Because of all this we should be very careful in using the dispersion model 
where backmixing is large, particularly if the system is not closed. 

(f) We will not discuss the equations and curves for the open-closed or closed- 
open boundary conditions. These can be found in Levenspiel (1996). 

Step Input of Tracer 

Here the output F curve is S-shaped and is obtained by integrating the corre- 
sponding E curve. Thus at any time t or 6 

The shape of the F curve depends on DIuL and the boundary conditions for 
the vessel. Analytical expressions are not available for any of the F curves; 
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t 8 = =  
t 

Figure 13.11 Step response curves for small deviations from plug flow. 

however, their graphs can be constructed. Two typical cases are displayed below, 
in Figs. 13.11 and 13.13. 

Small Deviation from Plug Flow, DIuL < 0.01 From Eqs. 8 and 16 we can find 
the curves of Fig. 13.11, as shown. For these small deviations from plug flow we 
can find DIuL directly by plotting the experimental data on probability graph 
paper as indicated in Fig. 13.12. Example 13.2 shows in detail how this is done. 

Step Response for Large Dispersion, DIuL > 0.01. For large deviations from 
plug flow, the problem of boundary conditions must be considered, the resulting 
S-shaped response curves are not symmetrical, their equations are not available, 
and they are best analyzed by first differentiating them to give the corresponding 
C,,,,, curve. Figure 13.13 shows an example of this family of curves. 

Figure 13.12 Probability plot of a step response signal. From this we 
find DIuL directly. 
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0 0.5 1 1.5 2 

e =  i 
t 

Figure 13.13 Step response curves for large deviations from plug flow in 
closed vessels. 

Comments 

(a) One direct commercial application of the step experiment is to find the 
zone of intermixing-the contaminated width-between two fluids of 
somewhat similar properties flowing one after the other in a long pipeline. 
Given DIuL we find this from the probability plot of Fig. 13.12. Design 
charts to ease the calculation are given by Levenspiel (1958a). 

(b) Should you use a pulse or step injection experiment? Sometimes one type 
of experiment is naturally more convenient for one of many reasons. In 
such a situation this question does not arise. But when you do have a 
choice, then the pulse experiment is preferred because it gives a more 
"honest" result. The reason is that the F curve integrates effects; it gives 
a smooth good-looking curve which could well hide real effects. For 
example, Fig. 13.14 shows the corresponding E and F curves for a given 
vessel. 

A 

is clearly evident. 
You can't miss it. 

E F miss this? 

t t 

Figure 13.14 Sensitivity of the E and F curves for the same flow. 
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[ EXAMPLE 13.1 DluL FROM A C,,,,,, CURVE 

On the assumption that the closed vessel of Example 11.1, Chapter 11, is well 
represented by the dispersion model, calculate the vessel dispersion number 
DIuL. The C versus t tracer response of this vessel is 

SOLUTION 

Since the C curve for this vessel is broad and unsymmetrical, see Fig. 11.E1, let 
us guess that dispersion is too large to allow use of the simplification leading to 
Fig. 13.4. We thus start with the variance matching procedure of Eq. 18. The 
mean and variance of a continuous distribution measured at a finite number of 
equidistant locations is given by Eqs. 3 and 4 as 

and 

Using the original tracer concentration-time data, we find 

C c i = 3 + 5 + 5 + 4 + 2 + 1 = 2 0  

2 t i c i  = (5 X 3 )  + (10 X 5)  + . + (30 X 1)  = 300 min 

t:Ci = (25 X 3 )  + (100 X 5)  + . - + (900 X 1 )  = 5450 min2 

Therefore 

and 
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Now for a closed vessel Eq. 13 relates the variance to DIuL. Thus 

Ignoring the second term on the right, we have as a first approximation 

-- 2: 0.106 
uL 

Correcting for the term ignored we find by trial and error that 

Our original guess was correct: This value of DIuL is much beyond the limit 
where the simple gaussian approximation should be used. 

D/uL FROM AN F CURVE 

von Rosenberg (1956) studied the displacement of benzene by n-butyrate in a 
38 mm diameter packed column 1219 mm long, measuring the fraction of n- 
butyrate in the exit stream by refractive index methods. When graphed, the 
fraction of n-butyrate versus time was found to be S-shaped. This is the F curve, 
and it is shown in Fig. E13.2a for von Rosenberg's run at the lowest flow rate, 
where u = 0.0067 mmls, which is about 0.5 mlday. 

Find the vessel dispersion number of this system. 

Time, (sec x 

(a)  

Figure E13.2~ From von Rosenberg (1956). 
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Instead of taking slopes of the F curve to give the E curve and then determining 
the spread of this curve, let us use the probability paper method. So, plotting 
the data on this paper does actually give close to a straight line, as shown in 
Fig. E13.2b. 

(b) 

Figure E13.2b From Levenspiel and Smith (1957). 

To find the variance and DIuL from a probability graph is a simple matter. 
Just follow the procedure illustrated in Fig. 13.12. Thus Fig. E13.2b shows that 

the 16th percentile point falls at t = 178 550 s 
the 84th percentile point falls at t = 187 750 s 

and this time interval represents 2u. Therefore the standard deviation is 

We need this standard deviation in dimensionless time units if we are to find 
D. Therefore 
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Hence the variance 

and from Eq. 8 

Note that the value of DIuL is well below 0.01, justifying the use of the gaussian 
approximation to the tracer curve and this whole procedure. 

D/uL FROM A ONE-SHOT INPUT 

Find the vessel dispersion number in a fixed-bed reactor packed with 0.625-cm 
catalyst pellets. For this purpose tracer experiments are run in equipment shown 
in Fig. E13.3. 

The catalyst is laid down in a haphazard manner above a screen to a height 
of 120 cm, and fluid flows downward through this packing. A sloppy pulse of 
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radioactive tracer is injected directly above the bed, and output signals are 
recorded by Geiger counters at two levels in the bed 90 cm apart. 

The following data apply to a specific experimental run. Bed voidage = 0.4, 
superficial velocity of fluid (based on an empty tube) = 1.2 cmlsec, and variances 
of output signals are found to be o: = 39 sec2 and of = 64 sec2. Find DIuL. 

SOLUTION 

Bischoff and Levenspiel (1962) have shown that as long as the measurements 
are taken at least two or three particle diameters into the bed, then the open 
vessel boundary conditions hold closely. This is the case here because the mea- 
surements are made 15 cm into the bed. As a result this experiment corresponds 
to a one-shot input to an open vessel for which Eq. 12 holds. Thus 

I or in dimensionless form 

1.2 cmlsec - 1 
Ao; = A o 2  (b)2 = (25 sec2) [ ] - - (90 cm)(0.4) 36 

I from which the dispersion number is 

13.2 CORRELATIONS FOR AXIAL DISPERSION 

The vessel dispersion number DIuL is a product of two terms 

D intensity of geometric D d z= (dispersion) ( factor ) = (2) (z) 
where 

fluid ) ( flow ) = 

properties dynamics no. 

and where 

d is a characteristic length = d,,,, or d, 

Experiments show that the dispersion model well represents flow in packed 
beds and in pipes. Thus theory and experiment give Dlud for these vessels. We 
summarize them in the next three charts. 
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Figure 13.15 Correlation for the dispersion of fluids flowing in pipes, adapted from Levenspiel 
(1958b). 

Figures 13.15 and 13.16 show the findings for flow in pipes. This model repre- 
sents turbulent flow, but only represents streamline flow in pipes when the pipe 
is long enough to achieve radial uniformity of a pulse of tracer. For liquids this 
may require a rather long pipe, and Fig. 13.16 shows these results. Note that 
molecular diffusion strongly affects the rate of dispersion in laminar flow. At 
low flow rate it promotes dispersion; at higher flow rate it has the opposite effect. 

Correlations similar to these are available or can be obtained for flow in 
beds of porous and/or adsorbing solids, in coiled tubes, in flexible channels, for 
pulsating flow, for non-Newtonians, and so on. These are given in Chapter 64 
of Levenspiel (1996). 

Figure 13.17 shows the findings for packed beds. 
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Bodenstein no.: (Re)(Sc) = * 1 = 5 
I*. PB 9 

Figure 13.16 Correlation for dispersion for streamline flow in pipes; prepared from Taylor 
(1953, 1954a) and Aris (1956). 

Figure 13.17 Experimental findings on dispersion of fluids flowing with mean axial 
velocity u in packed beds; prepared in part from Bischoff (1961). 
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13.3 CHEMICAL REACTION AND DISPERSION 

Our discussion has led to the measure of dispersion by a dimensionless group 
DIuL. Let us now see how this affects conversion in reactors. 

Consider a steady-flow chemical reactor of length L through which fluid is 
flowing at a constant velocity u,  and in which material is mixing axially with a 
dispersion coefficient D. Let an nth-order reaction be occurring. 

A * products, -rA = kC2 

By referring to an elementary section of reactor as shown in Fig. 13.18, the 
basic material balance for any reaction component 

input = output + disappearance by reaction + accumulation (4.1) 

becomes for component A, at steady state, 

disappearance 
(Out-in)b~lkfl~~ + (Out-in)axialdispersion + by reaction + accumulation = o 

The individual terms (in moles Altime) are as follows: 

(moles A) ( flow ) (cross-sectional entering by bulk flow = - 
volume velocity area 

= CA,,uS, [molls] 

leaving by bulk flow = CAJt~,uS 

entering by axial dispersion = 
dt 

Cross-sectional 
area = S 

/ Accurndation of A 
Disappearance (= 0, for steady state) 

of A 

Figure 13.18 Variables for a closed vessel in 
which reaction and dispersion are occurring. 
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d N ~  = - (DS %) leaving by axial dispersion = - 
dt [+PI 

disappearance by reaction = (-r,) V = (-rA)S Al, [molls] 

Note that the difference between this material balance and that for the ideal 
plug flow reactors of Chapter 5 is the inclusion of the two dispersion terms, 
because material enters and leaves the differential section not only by bulk flow 
but by dispersion as well. Entering all these terms into Eq. 17 and dividing by 
S A1 gives 

Now the basic limiting process of calculus states that for any quantity Q which 
is a smooth continuous function of 1 

So taking limits as A1 + 0 we obtain 

In dimensionless form where z = l/L and r  = t = Llu = Vlv, this expression be- 
comes 

or in terms of fractional conversion 

This expression shows that the fractional conversion of reactant A in its passage 
through the reactor is governed by three dimensionless groups: a reaction rate 
group kr  C;il, the dispersion group DIuL, and the reaction order n. 

First-Order Reaction. Equation 18 has been solved analytically by Wehner and 
Wilhelm (1956) for first-order reactions. For vessels with any kind of entrance 
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Figure 13.19 Comparison of real and plug flow reactors for the first-order 
A + products, assuming negligible expansion; from Levenspiel and Bischoff 
(1959, 1961). 

and exit conditions the solution is 

where 

Figure 13.19 is a graphical representation of these results in useful form, 
prepared by combining Eq. 19 and Eq. 5.17, and allows comparison of reactor 
sizes for plug and dispersed plug flow. 

For small deviations from plug flow DIuL becomes small, the E curve ap- 
proaches gaussian; hence, on expanding the exponentials and dropping higher 
order terms Eq. 19 reduces to 

" It should be noted that Eq. 21 applies to any gaussian RTD with variance u2. 



13.3 Chemical Reaction and Dispersion 315 

Equation 20 with Eq. 5.17 compares the performance of real reactors which are 
close to plug flow with plug flow reactors. Thus the size ratio needed for identical 
conversion is given by 

---- D 
- - 1 + ( k 3  - for same C,,., 

LP VP u L  

while the exit concentration ratio for identical reactor size is given by 

-- 
D 

- 1 + ( k ~ ) ~  - for same V or r  
CAP u L  

nth-Order Reactions. Figure 13.20 is the graphical representation of the solu- 
tion of Eq. 18 for second-order reactions in closed vessels. It is used in a manner 
similar to the chart for first-order reactions. To estimate reactor performance for 
reactions of order different from one and two we may extrapolate or interpolate 
between Figs. 13.19 and 13.20. 

Figure 13.20 Comparison of real and plug flow reactors for the second- 
order reactions 

A + B -t products, C,, = C,, 
or .  . . 2A -+ products 

assuming negligible expansion; from Levenspiel and Bischoff (1959,1961). 
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CONVERSION FROM THE DISPERSION MODEL 

two methods and comment. 

Matching the experimentally found variance with that of the dispersion model, 
we find from Example 13.1 

D - = 0.12 
uL 

Conversion in the real reactor is found from Fig. 13.19. Thus moving along the 
kr  = (0.307)(15) = 4.6 line from CICo = 0.01 to DIuL = 0.12, we find that the 
fraction of reactant unconverted is approximately 

- - - 0.035, or 35% 
Co - 

Comments. Figure E13.4 shows that except for a long tail the dispersion model 
curve has for the most part a greater central tendency than the actual curve. On 
the other hand, the actual curve has more short-lived material leaving the vessel. 

Both curves have the sarnev2 

Relatively large 
contribution to 
variance of the 

Figure E13.4 

Because this contributes most to the reactant remaining unconverted, the finding 
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Extensions 

Levenspiel (1996) Chapter 64 discusses and presents performance equations for 
various extensions to this treatment. A much more detailed exposition of this 
subject is given by Westerterp et al. (1984) Chapter 4. 
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PROBLEMS 

13.1. The flow pattern of gas through blast furnaces was studied by VDEh (Veren 
Deutscher Eisenhiittenleute Betriebsforschungsinstitut) by injecting Kr-85 
into the air stream entering the tuyeres of the 688 m3 furnace. A sketch 
and listing of pertinent quantities for run 10.5 of 9.12.1969 is shown in Fig. 
P13.1. Assuming that the axial dispersion model applies to the flow of gas 

Iron ore 
zP=,,rn,\ ~ = ~ E F r n r n  Width of 

curve at 61% 

Figure P13.1 
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in the blast furnace, compare Dlud for the middle section of the blast 
furnace with that expected in an ordinary packed bed. 

From Standish and Polthier, Blast Furnace Aerodynamics, p. 99, N. 
Standish, ed., Australian I. M. M. Symp., Wollongong, 1975. 

13.2. Denmark's longest and greatest river, the Gudenaa, certainly deserves 
study, so pulse tracer tests were run on various stretches of the river using 
radioactive Br-82. Find the axial dispersion coefficient in the upper stretch 
of the river, between Torring and Udlum, 8.7 km apart, from the following 
reported measurements. 

C, arbitrary C, arbitrary 

440 
250 
122 
5 1 
20 
9 
3 
0 

Data from Danish Isotope Center, report of November 1976. 

13.3. RTD studies were carried out by Jagadeesh and Satyanarayana (IECIPDD 
11 520, 1972) in a tubular reactor (L = 1.21 m, 35 mm ID). A squirt of 
NaCl solution (5 N) was rapidly injected at the reactor entrance, and 
mixing cup measurements were taken at the exit. From the following results 
calculate the vessel dispersion number; also the fraction of reactor volume 
taken up by the baffles. 

t, sec NaCl in sample 

13.4. A pulse of radioactive Ba-140 was injected into a 10-in. pipeline (25.5 cm 
ID) 293 km long used for pumping petroleum products (u = 81.7 cmls, 
Re = 24 000) from Rangely, Colorado to Salt Lake City, Utah. Estimate 
the time of passage of fluid having more than 112 C,, of tracer and compare 
the value you calculate with the reported time of passage of 895 sec averaged 
over five runs. From the table of values for the gaussian distribution C > 
C,,,12 occurs between 4 t- 1.18 (T,. This may be helpful information. Data 
from Hull and Kent, Ind. Eng. Chem., 44,2745 (1952). 
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13.5. An injected slug of tracer material flows with its carrier fluid down a long, 
straight pipe in dispersed plug flow. At point A in the pipe the spread of 
tracer is 16 m. At point B, 1 kilometer downstream from A, its spread is 
32 m. What do you estimate its spread to be at a point C, which is 2 
kilometers downstream from point A? 

13.6. A refinery pumps products A and B successively to receiving stations up 
to 100 km away through a 10-cm ID pipeline. The average properties of 
A and B are p = 850 kg/m3, p = 1.7 X kglm-s, !3 = m2/s, the 
fluid flows at u = 20 cmls, and there are no reservoirs, holding tanks or 
pipe loops in the line; just a few bends. Estimate the 16%-84% contaminated 
width 100 km downstream. Adapted from Petroleum Refiner, 37, 191 
(March 1958); Pipe Line Industry, pg. 51 (May 1958). 

13.7. Kerosene and gasoline are pumped successively at 1.1 m/s through a 25.5- 
cm ID pipeline 1000 km long. Calculate the 5195%-9515% contaminated 
width at the exit of the pipe given that the kinematic viscosity for the 501 
50% mixture is 

(Data and problem from Sjenitzer, Pipeline Engineer, December 1958). 

13.8. Water is drawn from a lake, flows through a pump and passes down a long 
pipe in turbulent flow. A slug of tracer (not an ideal pulse input) enters 
the intake line at the lake, and is recorded downstream at two locations 
in the pipe L meters apart. The mean residence time of fluid between 
recording points is 100 sec, and variance of the two recorded signals is 

What would be the spread of an ideal pulse response for a section of this 
pipe, free from end effects and of length L/5? 

13.9. Last autumn our office received complaints of a large fish kill along the 
Ohio River, indicating that someone had discharged highly toxic material 
into the river. Our water monitoring stations at Cincinnati and Portsmouth, 
Ohio (119 miles apart) report that a large slug of phenol is moving down 
the river and we strongly suspect that this is the cause of the pollution. 
The slug took 9 hours to pass the Portsmouth monitoring station, and its 
concentration peaked at 8:00 A.M. Monday. About 24 hours later the slug 
peaked at Cincinnati, taking 12 hours to pass this monitoring station. 

Phenol is used at a number of locations on the Ohio River, and their 
distance upriver from Cincinnati are as follows: 

Ashland, KY-150 miles upstream Marietta, OH-303 
Huntington, WV-168 Wheeling, WV-385 
Pomeroy, OH-222 Steubenville, OH-425 
Parkersburg, WV-290 Pittsburgh, PA-500 

What can you say about the probable pollution source? 
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13.10. A 12-m length of pipe is packed with 1 m of 2-mm material, 9 m of 1-cm 
material, and 2 m of 4-mm material. Estimate the variance in the output 
C curve for a pulse input into this packed bed if the fluid takes 2 min to 
flow through the bed. Assume a constant bed voidage and a constant 
intensity of dispersion given by Dlud, = 2. 

13.11. The kinetics of a homogeneous liquid reaction are studied in a flow reactor, 
and to approximate plug flow the 48-cm long reactor is packed with 5- 
mm nonporous pellets. If the conversion is 99% for a mean residence time 
of 1 sec, calculate the rate constant for the first-order reaction 
(a) assuming that the liquid passes in plug flow through the reactor 
(b) accounting for the deviation of the actual flow from plug flow 
(c) What is the error in calculated k if deviation from plug flow is not con- 

sidered? 
Data: Bed voidage E = 0.4 

Particle Reynolds number Re, = 200 

13.12. Tubular reactors for thermal cracking are designed on the assumption of 
plug flow. On the suspicion that nonideal flow may be an important factor 
now being ignored, let us make a rough estimate of its role. For this 
assume isothermal operations in a 2.5-cm ID tubular reactor, using a 
Reynolds number of 10 000 for flowing fluid. The cracking reaction is 
approximately first order. If calculations show that 99% decomposition 
can be obtained in a plug flow reactor 3 m long, how much longer must 
the real reactor be if nonideal flow is taken into account? 

13.13. Calculations show that a plug flow reactor would give 99.9% conversion 
of reactant which is in aqueous solution. However, our rector has an RTD 
somewhat as shown in Fig. P13.13. If C,, = 1000, what outlet concentration 
can we expect in our reactor if reaction is first order? From mechanics 
a2 = a2/24 for a symmetrical triangle with base a, rotating about its center 
of gravity. 

from mechanics 

+a+  

Figure P13.13 
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The Tanks-In-Series Model 

This model can be used whenever the dispersion model is used; and for not too 
large a deviation from plug flow both models give identical results, for all practical 
purposes. Which model you use depends on your mood and taste. 

The dispersion model has the advantage in that all correlations for flow in 
real reactors invariably use that model. On the other hand the tanks-in-series 
model is simple, can be used with any kinetics, and it can be extended without 
too much difficulty to any arrangement of compartments, with or without recycle. 

14.1 PULSE RESPONSE EXPERIMENTS AND THE RTD 

Figure 14.1 shows the system we are considering. We also define 

t 
0; = = = dimensionless time based on the mean residence time per tank 2; 

ti 

t 
6 = = = dimensionless time based on the mean residence time in all N tanks, 7. 

t 

Then 

- 
Oi=N6 ... and ... 6 , = 1 ,  3 = 1  

and at any particular time, from Eq. 11 in Chapter 11 

For the first tank. Consider a steady flow v m3/s of fluid into and out of the 
first of these ideal mixed flow units of volume V,. At time t = 0 inject a pulse 
of tracer into the vessel which when evenly distributed in the vessel (and it is) 
has a concentration C,, . 

At any time t after the tracer is introduced make a material balance, thus 

rate of disappearance input output 
of tracer ) = ( rate ) - ( rate ) 
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Exit tracer curve, 
the RTD, the E function 

= mean timeltanks 

i= N $  = mean time for al l  N tanks 

Figure 14.1 The tanks-in-series model. 

In symbols this expression becomes 

dC1 mol tracer vl-=o-uc, 
dt 

where C1 is the concentration of tracer in tank "1." Separating and integrating 
then gives 

Since the area under this CIC, versus t curve is i1 (check this if you wish) it 
allows you to find the E curve; so one may write 

For the second tank where C1 enters, C2 leaves, a material balance gives 

Separating gives a first-order differential equation, which when integrated gives 

For the Nth tank. Integration for the 3rd, 4th, . . . , Nth tank becomes more 
complicated so it is simpler to do all of this by Laplace transforms. 
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The RTD's, means and variances, both in time and dimensionless time were 
first derived by MacMullin and Weber (1935) and are summarized by Eq. 3. 

N-1 -2 

7. = (-&) NN e-tNli  . . . 7 = N Z ,  . . . g2 = L 
( N  - I ) !  N 

N-1 
e-"it . . . 

- 
- t  t .  = -. . . (,2 = N t ;  

( N  - I ) !  l N  

- 
E , = t i E =  . . . (.ZL 0. - - N  

E@ = (NQ E = N 
1  e-NR. .  . @2 - - 

( N -  I ) !  @ - N  

Graphically these equations are shown in Fig. 14.2. The properties of the RTD 
curves are sketched in Fig. 14.3. 

~=r=t  %.=A 
N t i  t I ti 

Figure 14.2 RTD curves for the tanks-in-series model, Eq. 3. 
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e 

Figure 14.3 Properties of the RTD curve for the tanks-in-series model. 

Comments and Extensions 

1ndependence.l If M tanks are connected to N more tanks (all of the same size) 
then the individual means and variances (in ordinary time units) are additive, or 

- - %+, = tM + t,. . . and . . . CT~,,, = a% + a$ (4) 

Because of this property we can join incoming streams with recycle streams. 
Thus this model becomes useful for treating recirculating systems. 

One-shot Tracer Input. If we introduce any one-shot tracer input into N tanks, 
as shown in Fig. 14.4, then from Eqs. 3 and 4 we can write 

Because of the independence of stages it is easy to evaluate what happens to 
the C curve when tanks are added or subtracted. Thus this model becomes useful 
in treating recycle flow and closed recirculation systems. Let us briefly look at 
these applications. 

By independence we mean that the fluid loses its memory as it passes from vessel to vessel. Thus 
a faster moving fluid element in one vessel does not remember this fact in the next vessel and doesn't 
preferentially flow faster (or slower) there. Laminar flow often does not satisfy this requirement of 
independence; however, complete (or lateral) mixing of fluid between units satisfies this condition. 
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Model for vessel ............................. 

... 
I - - - - - - - - - - - - - - - - - - - - - - - - - - - - J  

Figure 14.4 For any one-shot tracer input Eq. 4 relates input, output, and number of tanks. 

Closed Recirculation System. If we introduce a 6 signal into an N stage system, 
as shown in Fig. 14.5, the recorder will measure tracer as it flows by the first 
time, the second time, and so on. In other words it measures tracer which has 
passed through N tanks, 2N tanks, and so on. In fact it measures the superposition 
of all these signals. 

To obtain the output signal for these systems simply sum up the contributions 
from the first, second, and succeeding passes. If m is the number of passes, we 
then have from Eq. 3 

- (tlTi)rnN-l 
iiCpulse = e-titi ' ( m N  - I ) !  m = l  

0yN-1 
C Q ~ ,  pulse 

= e-oi 2 
rn=l ( m N  - I)! 

- (N6)rnN-I 
CBpulse = Ne-NQ C 

m=l ( m N  - I ) !  

Figure 14.5 shows the resulting C curve. As an example of the expanded form 
of Eq. 5 we have for five tanks in series 

where the terms in brackets represent the tracer signal from the first, second, 
and successive passes. 

Recirculation systems can be represented equally well by the dispersion model 
[see van der Vusse (1962), Voncken et al. (1964), and Harrell and Perona (1968)l. 
Which approach one takes simply is a matter of taste, style, and mood. 
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8-input signal Output signal 

' N tanks, 1 pass (Eq. 3) 

N tanks, 2nd pass 

- 

I 
1 2 3 4  

= e 

Figure 14.5 Tracer signal in a recirculating system. 

Recirculation with Throughflow. For relatively rapid recirculation compared 
to throughflow, the system as a whole acts as one large stirred tank; hence, 
the observed tracer signal is simply the superposition of the recirculation 
pattern and the exponential decay of an ideal stirred tank. This is shown in 
Fig. 14.6 where C, is the concentration of tracer if it is evenly distributed in 
the system. 

This form of curve is encountered in closed recirculation systems in which 
tracer is broken down and removed by a first-order process, or in systems using 

ut 

T . E , ~  Model, mean t ime = i  
co 

t 

Figure 14.6 Recirculation with slow throughflow. 
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radioactive tracer. Drug injection on living organisms give this sort of superposi- 
tion because the drug is constantly being eliminated by the organism. 

Step Response Experiments and the F Curve The output F curve from a series 
of N ideal stirred tanks is, in its various forms, given by Eq. 8. 

1 + N O +  W2 + ... +(W + ..I 
2! (N  - I)! 

I I 

Number 
o f  tanks = 

ForN=3 

For N tanks 

This is shown in graphical form in Fig. 14.7. 

Figure 14.7 The F curve for the tanks-in-series model, from MacMullin and 
Weber (1935). 
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14.2 CHEMICAL CONVERSION 

First-Order Reaction 

Chapter 6 develops the conversion equation. Thus for first-order reactions in 
one tank 

for N tanks in series 

A comparison with plug flow performance is given in Fig. 6.5. 
For small deviations from plug flow (large N )  comparison with plug flow gives 

for same CA ,,,,: 

(k?)2 c ~ , ~ t a n k s  - ; for same volume V: - - 
c~~ 2N 

These equations apply to both micro- and macrofluids. 

Second-Order Reaction of a Microfluid, A + R or A + B + R with C,, = C,, 

For a microfluid flowing through N tanks in series Eq. 6.8 gives 

and Fig. 6.6 compares the performance to that for plug flow. 

All Other Reaction Kinetics of Microfluids 

Either solve the mixed flow equation for tank after tank 

a rather tedious process, but no problem today with our handy slave, the com- 
puter. Or else we could use the graphical procedure shown in Fig. 14.8. 



14.2 Chemical Conversion 329 

Parallel lines for 

-'A 

c ~ 4  c ~ 3  c ~ 2  c ~ l  

Figure 14.8 Graphical method of evaluating the performance 
of N tanks in series for any kinetics. 

Chemical Conversion of Macrofluids 

There is rare use for macrofluid equations for homogeneous reactions. However, 
if you do need them combine Eq. 11.3 with Eq. 3 for N tanks in series, to give 

These equations may not be of practical use for homogeneous systems; however, 
they are of primary importance for heterogeneous systems, especially for GIs 
systems. 

MODIFICATIONS TO A WINERY 

A small diameter pipe 32 m long runs from the fermentation room of a winery 
to the bottle filling cellar. Sometimes red wine is pumped through the pipe, 
sometimes white, and whenever the switch is made from one to the other a 
small amount of "house blend" rosC is produced (8 bottles). Because of some 
construction in the winery the pipeline length will have to be increased to 50 m. 
For the same flow rate of wine, how many bottles of rosC may we now expect 
to get each time we switch the flow? 

Figure E14.1 sketches the problem. Let the number of bottles, the spread, be 
related to a. 

Original: L l = 3 2 m  a , = 8  a I = 6 4  
Longer pipe: L, = 50 m a, = ? (T; = ? 
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Eight bottles 

How many bottles? 

Figure E14.1 

But for small deviations from plug flow, from Eq. 3 a2 oc N or a2 L. 

:. a, = 10. . . or we can expect 10 bottles of vin rosC 

A FABLE ON RIVER POLLUTION 

Last spring our office received complaints of a large fish kill along the Ohio 
River, indicating that someone had discharged highly toxic material into the 
river. Our water monitoring stations at Cincinnati and Portsmouth, Ohio (119 
miles apart), report that a large slug of phenol is moving down the river, and 
we strongly suspect that this is the cause of the pollution. The slug took about 
10.5 hours to pass the Portsmouth monitoring station, and its concentration 
peaked at 8:00 A.M. Monday. About 26 hours later the slug peaked at Cincinnati, 
taking 14 hours to pass this monitoring station. 

Phenol is used at a number of locations on the Ohio River, and their distance 
upriver from Cincinnati are as follows: 

Ashland, KY-150 miles upstream Marietta, OH-303 
Huntington, WV-168 Wheeling, WV-385 
Pomeroy, OH-222 Steubenville, OH-425 
Parkersburg, WV-290 Pittsburgh, PA-500 

What can you say about the probable pollution source? 

SOLUTION 

Let us first sketch what is known, as shown in Fig. E14.2. To start, assume that 
a perfect pulse is injected. Then according to any reasonable flow model, either 
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I - 119 miles 

L miles 

Figure E14.2 

dispersion or tanks-in-series, we have 

distance from 
~ f r a c e r  curve CC point of origin 

spread of distance from ( curve ) a J origin 

:. from Cincinnati: 14 = k L1" 

:. from Portsmouth: 10.5 = k(L - 119)la 

Dividing one by the other gives 

14 L . . . from which L = 272 moles 

Comment. Since the dumping of the toxic phenol may not have occurred instan- 
taneously, any location where L 5 272 miles is suspect, or 

Ashland 1 
Huntington } t 
Pomeroy 1 

This solution assumes that different stretches of the Ohio River have the same 
flow and dispersion characteristics (reasonable), and that no suspect tributary 
joins the Ohio within 272 miles of Cincinnati. This is a poor assumption . . . 
check a map for the location of Charleston, WV, on the Kanawah River. 
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B M  4 FLOW MODELS FROM RTD CURVES 1 : , * -  

Let us develop a tanks-in-series model to fit the RTD shown in Fig. E14.3~. 

(a) 

Figure E14.3~ 

1 SOLUTION 

As a first approximation, assume that all the tracer curves are ideal pulses. We 
will later relax this assumption. Next notice that the first pulse appears early. 
This suggests a model as shown in Fig. E14.3b, where v = 1 and V, + V, + 
V, = 1. In Chapter 12 we see the characteristics of this model, so let us fit it. 
Also it should be mentioned that we have a number of approaches. Here is one: 

* Look at the ratio of areas of the first two peaks 

From the location of the first peak 

Vl - - Vl - 1 . . . 
( R  + 1)u (1 + 1) 6 

* From the time between peaks 

Since V, + V, add up to 1, there is no dead volume, so at this point our model 
reduces to Fig. E14.3~. Now relax the plug flow assumption and adopt the 
tanks-in-series model. From Fig. 14.3 

I So our model finally is shown in Fig. E14.3d. 
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Figure E14.3b and c 

Figure E14.3d 

Bypassing the Complex Process of Deconvolution 

Suppose we measure the sloppy input and output tracer curves for a process 
vessel for the purpose of studying the flow through the vessel, thus to find the 
E curve for the vessel. In general this requires deconvolution (see Chapter 11); 
however, if we have a flow model in mind whose parameter has a one-to-one 
relationship with its variance, then we can use a very simple shortcut to find the 
E curve for the vessel. 

Example 14.4 illustrates this method. 

FINDING THE VESSEL E CURVE USING A SLOPPY 
TRACER INPUT 

I 
Given Ci, and C,,, as well as the location and spread of these tracer curves, as 
shown in Fig. E14.4~ estimate the vessel E curve. We suspect that the tanks-in- 
series model reasonably represents the flow in the vessel. 

I From Fig. E14.4a we have, for the vessel, 
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C,, with '= 220s , u2 = 1oos2 

Find the E curve for 
the vessel 

(a) 

Figure E14.4a 

Equation 3 represents the tanks-in-series model and gives 

So from Eq. 3a, for N tanks-in-series we have 

and for N = 4 

Figure E14.4b shows the shape of this E curve. 

t ,  S 

(6 )  

Figure E14.4b 
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PROBLEMS 

14.1. Fit the tanks-in-series model to the following mixing cup output data to 
a pulse input. 

14.2. Fluid flows at a steady rate through ten well-behaved tanks in series. A 
pulse of tracer is introduced into the first tank, and at the time this tracer 
leaves the system 

maximum concentration = 100 mmol 

tracer spread = 1 min 

If ten more tanks are connected in series with the original ten tanks, what 
would be 
(a) the maximum concentration of leaving tracer? 
(b) the tracer spread? 
(c) How does the relative spread change with number of tanks? 

14.3. From the New York Times Magazine, December 25,1955, we read: "The 
United States Treasury reported that it costs eight-tenths of a cent to 
print dollar bills, and that of the billion and a quarter now in circulation, 
a billion have to be replaced annually." Assume that the bills are put into 
circulation at a constant rate and continuously, and that they are with- 
drawn from circulation without regard to their condition, in a random 
manner. 

Suppose that a new series of dollar bills is put in circulation at a given 
instant in place of the original bills. 
(a) How many new bills will be in circulation at any time? 
(b) 21 years later, how many old bills will still be in circulation? 

14.4. Referring to the previous problem, suppose that during a working day a 
gang of counterfeiters put into circulation one million dollars in fake one- 
dollar bills. 
(a) If not detected, what will be the number in circulation as a function 

of time? 
(b) After 10 years, how many of these bills would still be in circulation? 
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14.5. Repeat Problem 13.13, but solve it using the tanks-in-series model instead 
of the dispersion model. 

14.6. A stream of fully suspended fine solids (v = 1 m3/min) passes through 
two mixed flow reactors in series, each containing 1 m3 of slurry. As soon 
as a particle enters the reactors, conversion to product begins and is 
complete after two minutes in the reactors. When a particle leaves the 
reactors, reaction stops. What fraction of particles is completely converted 
to product in this system? 

14.7. Fit the RTD of Fig. P14.7 with the tanks-in-series model. 

Figure P14.7 

14.8. From a pulse input into a vessel we obtain the following output signal 

We want to represent the flow through the vessel with the tanks-in-series 
model. Determine the number of tanks to use. 

Time,min 
Concentration 

(arbitrary) 

14.9. Strongly radioactive waste fluids are stored in "safe-tanks7' which are 
simply long, small-diameter (e.g., 20 m by 10 cm) slightly sloping pipes. 
To avoid sedimentation and development of "hot spots," and also to 
insure uniformity before sampling the contents, fluid is recirculated in 
these pipes. 

To model the flow in these tanks, a pulse of tracer is introduced and 
the curve of Fig. P14.9 is recorded. Develop a suitable model for this 
system and evaluate the parameters. 

1 3 5 7 9 11 13 15 
0 0 10 10 10 10 0 0 
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At injection 

/- Pass 

A Final value 7 

t 

Figure P14.9 RTD for a closed recirculating system. 

14.10. A reactor with a number of dividing baffles is to be used to run the 
reaction 

A -+ R with -rA = 0.05 CA mollliter. min 

A pulse tracer test gives the following output curve: 

Time,min I 0 10 20 30 40 50 60 70 

Concentrationreading 1 35 38 40 40 39 37 36 35 

(a) Find the area under the C versus t curve. 
(b) Find the E versus t curve. 
(c) Calculate the variance of the E curve. 
(d) How many tanks in series is this vessel equivalent to? 
(e) Calculate XA assuming plug flow. 
(f) Calculate XA assuming mixed flow. 
(g) Calculate XA assuming the tanks-in-series model. 
(h) Calculate XA directly from the data. 

14.11. A reactor has flow characteristics given by the nonnormalized C curve in 
Table P14.11, and by the shape of this curve we feel that the dispersion 
or tanks-in-series models should satisfactorily represent flow in the reactor. 
(a) Find the conversion expected in this reactor, assuming that the disper- 

sion model holds. 
(b) Find the number of tanks in series which will represent the reactor 

and the conversion expected, assuming that the tanks-in-series 
model holds. 
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Table P14.11. 

Time Tracer Concentration Time Tracer Concentration 

0 0 10 67 
1 9 15 47 
2 57 20 32 
3 81 30 15 
4 90 41 7 
5 90 52 3 
6 86 67 1 
8 77 70 0 

(c) Find the conversion by direct use of the tracer curve. 
(d) Comment on the difference in these results, and state which one you 

think is the most reliable. 

Data. The elementary liquid-phase reaction taking place is A + B -+ 

products, with a large enough excess of B so that the reaction is essentially 
first order. In addition, if plug flow existed, conversion would be 99% in 
the reactor. 


