
Conversion 2 
and Reactor Sizing 

Be more concerned with your character than with your 
reputation, because character is what you redly are 
while reputation is merely what others think you are. 

John Wooden, coach, UCLA Bruins 

Overview. In the first chapter, the general mole balance equation was 
detived and then applied to the four most common types of industrial 
reactors. A balance equation was developed for each reactor type and 
these equations are summarized in TabIe S-I. In Chapter 2, we will eval- 
uate these equations to size CSTRs and PFRs. To size these reactors we 
first define conversion, which is a measure of the reaction's progress 
toward completion, and then rewrite all the balance equations in terms of 
conversion. These equations are ofren referred to as the design equations. 
Next, we show how one may size a reactor line., determine the reactor 
volume necessary to achieve a specified conversion) once the relationship 
between the reaction rate, - r ~ ,  and conversion, X, is known. In addition 
to being abIe to size C S R s  and PFRs once given -r, =Am, another 
goal of this chapter is to compare CSTRs and PFRs and the overall con- 
versions far reactors arranged in series. It is also important to arrive at 
the best arrangement of reactors in series. 

After completing this chapter you will be able to size CSTRs and 
PFRs given the rate of reaction as a function of conversion and to calcu- 
late the overall conversion and reactor volumes for reactors arranged in 
series. 
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Definition of X 

2.1 Definition of Conversion 

In defining conversion, we choose one of the reactants as the basis of calcula- 
tion and then  late the other species involved in the reaction to this basis. In 
virtually all instances it is best to choose the limiting reactant as the basis of 
calculation. We develop the stoichiometric relationships and design equations 
by considering the general reaction 

The uppercase letters represent chemical species and the lowercase letters rep- 
resent stoichiometric coefficients. Taking species A as our basis of c~lcularion, 
we divide the reaction expression through by the stoichiometric coefficient of 
species A. in order to arrange the reaction expression in the form 

to put every quantity on a "per mole of A basis. our limiting reactant. 
Now we ask such questions as "How can we quantify how far a reaction 

[e.g., Equation (2-2)] proceeds to the right?" or "Mow many moles of C are 
formed for every mole A consumedr' A convenient way to answer these ques- 
tions is to define a parameter called conversion. The conversion XA is the num- 
ber of moles of A that have reacted per mole of A fed to the system: 

x* = Moles of A reacted 
Moles af A fed 

Because we arre defining conversion with respect to our basis of calculation [A in 
Equation (2-211, we eliminate the subscript A for the sake of brevity and let X = X, . 
For irreversible reactions, the maximum conversion is 1 .O, i.e., complete conversion. 
For reversible reactions, the maximum conversion is the equilibrium conversion & 
(i.e., X,, = X,). 

2.2 Batch Reactor Design Equations 

In most batch reactars. the longer a reactant stays in the reactor, the more the 
reactant is converted 10 product until either equilibrium is reached or the reac- 
tant is exhausted, Consequently. in batch systems the conversion X is a func- 
tion of the time the reactants spend in the reactor. If WAO i s  the number of 
moles of A initiaIly in the react* then the total number of moles of A that 
have reacted after a time r is [h'A,lXj 

Moles of A reacted I 
r 7 (2-3)  
Moles of A I 

= I .Wqul  reacted j [XI 
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Now, the number of moles of A that remain in the reactor after a time r ,  
N,, can be expressed in terms of NAO and X: 

Moles of A that 

The number of moles of A in the reactor after a conversion X has been 
achieved 1s 

When no spatial variations in reaction rate exist, the mole balance on spe- 
cies A for a batch system is given by the following equation [cf. Equation (1-5)J: 

This equation is valid whether or not the reactor volunle is constant. In the 
general reaction, Equation (2-2) .  reactant A is disappearing: therefore, we rnul- 
tiply both sides of Equation (2-5)  by -1 to obtain the mole balance for the 
hatch reactor in the form 

The rate of disappearance of A. -r,, in  this reaction might be given by a rate 
law similar to Equation (1-2), such as - r ,  = kCACB. 

For batch reactors. we are interested in determining how long to leave the 
reactants in the reactor tn achieve a certain conversion X .  To determine this 
length of time, we write the mole balance. Equation (2-5) .  in terms of conver- 
sion by differentiating Equation (1-4) with respect to time, remembering that 
NAo is the number of moles of A initially present and is thereforc a conqtant 
with respect to time. 

Combining the above with Equation ( 2 - 5 )  yields 

For n batch reactor. the dedgn equation in differentia! form is 
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Constant-volume 
batch reactor 

Batch time t 
to achieve e 

conversion X 

u 
Batch 

Design 
Equation 

We call Equation (2-6)  the differential form of the design equation for 
batch reactor because we have written the mole balance in terms of conversior 
The differential forms of the batch reactor mole balances. Equations (2 -5 )  an1 
(2-6). are often used in the interpretation of reaction rate data (Chapter 5 )  ant 
for reactors with heat effects (Chapter 9), respectiveIy. Batch reactors are fre 
quently used in industry for both gas-phase and liquid-phase reactions. Thl 
laboratory bomb calorimeter reactor is widely used for obtaining reaction rat1 
data (see Section 9.3). Liquid-phase reactions are frequently carried out ii 

batch reactors when small-scale productton is desired or operating difficuftie, 
mle out the use of continuous flow systems. 

For a constant-volume batch reactor. V = V,,, Equation (2-5) can bc 
arranged into the form 

As previously mentioned. the differential form of the mole balance, e.g.. Equa 
tion (2-7). is used for analyzing rate data jn a batch reactor as we will see ir 
Chapters 5 and 9. 

To determine the time to achieve a specified conversion X, we first sepa- 
rate the variables in Equation (2-6) as follows 

This equation is now integrated with the limits that the reaction begins at 
time equal zero where there is no conversion initially (i.e., t = 0, X = 0). Car- 
rying out the inteption, we obtain the time t necessary to achieve a conver- 
sion X in a batch reactor 

The longer the reactants are left in the reactor, the greater will be h e  conver- 
sion. Equation (2-6) is the differential Form of the design equation. and Equa- 
tion (2-9) is the integral form of the design equation for a batch reactor. 

2.3 Design Equations for Flow Reactors 

For a hatch reactor. we saw that conversion increases with time spent in the 
reactor. For continuous-flow systems, this time usually increases with increasing 
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reactor volume. e.,a.. the biggert'lonper the reactor, the more time i t  will take 
the reactant5 to Row conipleteIy through the reactor and thus, the more time to 
react. Consequently, the conversion X is a Function of reactor volume V .  If FA,, 
i s  the molar flnw rate of specres A fed to a system operated at steady state. the 
molar rate at which species A is reacting rr3ithirr the entire system will be F,d .  

Moles of A fed, Moles of A reacted 
LF*ol.L.\1= lime Mole of  A fed 

Moles of A reacted '4 = time 

The molar feed rate of A ro the system minus the rate of reaction of A within 
the system eqltnls the moIar flow rate of A leaving the system FA. The preced- 
ing sentence can be written in the form of the following mathematical state- 
ment: 

Molar rate at 
Molar flow rate Molar flow rate 

consumed within 
fed to the system 

the system 

Rearranging gives 

The entering molar flow rate of species A. FA, (mol/s), is just the product of 
the entering concentration, CAo (mol/dmf ), and the entering volumetric flow 
rate, u, (drn31s): 

Liquid phase ?%IJ = c~n uo 

For liquid systems, C,, is commonly given in terms of molarity, for example, 

CAO = 2 rnol/drn3 

For gas sysrerns, CAo can be calculated from the entering temperature and pres- 
sure using the Ideal gas law or some other gas law. For an ideal gas (see 
Appendix B): 

Gas phase 
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The entering molar flow rate is 

where C,, = entering concentration, mol /dm3 

y, = entering mole fraction of A 

P, = entering total pressure, e.g., kPa 

PA,  = .v,,Po = entering partial pressure of A, e.g., kPa 

To = entering temperature, K 

R = ideal gas constant kPa ' see Appendix B 
mol * K 1 

The size of the reactor will depend on the flow rate, reaction kinetics, 
reactor conditions, and desired conversion. Let's first calculate the entering 
molar flow rate. 

Exumpk 2-1 U~it tg  the Ideal Gas Law to Caicuhfe CAl and FA* 

A gas of pure A at 830 kPa (8.2 atm) enters a reactor with a volumetric flow rate, 
v* of 2 dm% at 500 K. Calculate the enterlng concentration of A, C,,, and the 
entertng molar Bow rate. rho. 

Solurioil 

U'e again recall that for an ideal pas: 

where Po = 8.70 k% (8.3 atm) 
Y M )  = 1 . 0 ( P u ~ A )  
To = in~tral temperature = 500K 
R = 8.3 14 dm3 4 1;Palniol , K (Appendix B )  

Substituting the given paraineter values inlo Equation (E2-1. I )  yields 

We could also solve for the partial pressure in terms of the concentration: 

.- 
(1)(830 kPa) mol I 

c.40 = = 0.20- 
(8.334 dm? kPdrnol . KJ(500K) dm3 
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However, since pure A enters, the total pressure and partial pressure entering are the 
same. The entering molar flow rate, FA,, is just the p d u c t  of the entering concen- 
tration, C,,, and the entering volumetric flow rate, vo: 

I FA, = CA,vo = (0.2 mal/dm3)(2 dm3 Is) = (0.4 rnol/s) 

This feed rate (FA, = 0.4 moYs) is in the range of  that which is necessary to form 
several million pounds of product per year. We will use this value of FA, together 
with either Table 2-2 or Figure 2-1 to size and evaluate a number of reactor schemes 
in Examples 2-2 through 2-5. 

Now that we have a relationship [Equation (?-lo)] between the molar 
flow rate and cenversion, it is possible to express the design equations (i.e., 
mole balances) in terms of conversion for the flow reactors examined in 
Chapter I .  

2.3.1 CSTR (also known as a Backmix Reactor or Vat) 

Recall that the CSTR is modeled as being we11 mixed such that there are no 
spatial variations in the reactor. The CSTR mole balaoce, Equation ( I  -7), when 
applied to species A in the reaction 

can he arranged to 

We now substitute for FA in terns of FAO and X 

and then substitute Equation (2- 12) into (2-  1 1) 

v= 5 0  - (50 - F,d 
- r* 

Simplifying, we see the CSTR volulne necessary to achieve a specified conver- 

FA 
sjon X is 

ruU)Im 

Perfec~ mixing 
(2- 13) 
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Evalrlate -r, at Because the reactor is  perfprrk mixer/, the exit composition from the reactor i 
CSTR exit. identical to the composition inside the reactor, and the rate of reaction is eval 

uated at the exir conditions. 

2.3.2 Tubular Flow Reactor (FFR) 

We model the tubular reactor as having the fluid flowing in plug flow. i.e.. nr 
radial gradients in concentration, temperature, or reaction rate.' As the reac 
[ant$ enter and flow axially down the reactor, [hey are consumed and the con 
version increases along the length of the reactor. To develop the PFR desigr 
equation we first multiply both sides of the tubular reactor design equatior 
(1- 123 by - I .  We then express the mole balance equation for species A in tht 
reaction as 

For a flow system, FA has previously been given in terms of the entering molat 
Row rare FM and the conversion X 

differentiating 

dFA = - F A d X  

and substituting into (7-141, gives the differential form of the design equation 
for a plug-flow reactor (PFR): 

b l g n  

4 PFR b, We now separate the variables and integrate with the limits V = 0 when X = 0 
cquntlon to obtain the plug-flow reactor voluine necessary to achieve a specified conver- 

sion X: 

To carry out the integrations in the batch and plug-Row reactor design 
equations (2-9) and (2-16). as welI as to evaluate the CSTR design equation 
(2-23), we need to know how the reaction rate - r ~  varies with the concentra- 
tion (hence conversion) of the reacting species. This relationship between reac- 
tion rate and concentration is developed in Chapter 3. 

This constraint will be removed when we extend our analysis to nonideal (industrial) 
reactors in Chapters 13 rind Id. 
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PBR design 
equation 

2.3.3 Packed-Bed Reactor 

Packed-bed reactors are tubular reactors filled with catalyst particles. The drr- 
ivation of the differential and integral forms of the design equations For 
packed-bed reactors are analogous 10 those for a PFR {cf. Equations ( 2 -  15) and 
(2- 1611. That is, substituting Equation (2- 12) for FA in Equation ( 1 - 15) gives 

The differential Form o f  the design equation [i.e., Equation (2-17)J must be 
used when analyzing reactors that have a pressure drop along the length of the 
reactor. We discuss pressure drop in packed-bed reactors in Chapter 4. 

I n  the abserlce of pressure drop, i.e., AP = 0. we can integrate (2- 17) 
with Iimits X = 0 at W = 0 to obtain 

Equation (2-181 can be used to determine the catalyst weight W necessary to 
achieve a conversion X when the total pressure remains constant. 

2.4 Applications of the Design Equations 
for Continuous-Flow Reactors 

In this section. we are going ro show how we can size CSTRs and PFRs (i.e., 
determine their reactor volumes) from knowledge of rbe rate of reaction. -r,. 
as n function of conversion, X. The rate of  disappearance of A. -r,. is almost 
aIways a function of the concentrations of the various species present. When 
only one reaction is occurring. each of the concentrations can be expressed as 
a function of the conversion X (see Chapter 3); consequently, -r, can be 
expressed as a function of X. 

A particularly simple functional dependence, yet one that occurs often, is 
the first-order dependence 

Here. k is the specific reaction rate and is a function only of temperature, and 
CA0 is the entering concentration. We note in Equations (2-13) and (2-16) the 
reactor volume in a function of the reciprocal of -r,. For this first-order depen- 
dence, a plot of the reciprocal rate of reaction (I/-r,) as a function of conver- 
sion yields a curve similar to the one shown in Figure 2-1, where 
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If we know -r, as a 
function of X, we 

can size any 
isothermal 

mcrion system. 

To illustrate the design of a series of reactors, we consider the isotherrnaI 
gas-phase isomerization 

A - B  

We are going: to the laboratory to determine the rate of chemical reaction as a 
function of the conversion of reactant A. The laboratory measurements given 
in Table 2-1 show the chemical reaction raze as a function of conversion. The 
temperature was 500 K.(440"FI. the total pressure was 830 kPa (8.2 atm), and 
the initial charge to the reactor was pure A. 

Recalling the CSTR and PFR design equations, (2-13) and (2-I&}, 
we see that the reactor volume varies with the reciprocal of -r,, (I/-r,4f. e.g., 

V = (%)(F*&'). Consequently, to size reactors, we conven the rate data in 

Table 2- I to reciprocal rates, ( 1  I-rA). in Table 2-2. 

These data are used to arrive at a plot of (I/-r,) as a function of X. shown in 
Figure 2- 1 . 

We can use chis figure to size Row reactors for different entering molar 
flow rates. Before sizing flow reactors let's first consider some insights. If a 
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Figure 2-1 Processed data -I. 

reaction is carried out isothermally, the rate is usually greatest at the start of 
the reaction when the concentration of reactant is greatest (i.e., when there is 
negligible conversion SX E 03). Hence I 1/-rAf will be small. Near the end of 
the reaction, when the reactant has been mostly used up and thus the concen- 
tration of A is small (i.e., the conversion is large), the reaction rate will be 
small. Consequently. (I/-rA) is large. 

For all irreversible reactions of greater than zero order (see Chapter 3 for 
zero-order reactions), as we approach complete conversion where all the limit- 
ing reactant is used up. i.e., X = 1 .  the reciprocal rate approaches infinity as 
does the reactor volume. i.e. 

A + B t C  I As X + I .  - I : ,  + 0 , thus, - + x therefore If -+ 
- rA 

"To infinity Consequently, we see that an infinite reactor volume is necessary to reach 
and beyond" 

--Buzz Lightyear complete conversion, X = 1.0 
For reversible reactions (e.~., A B), the maximum conversion is the - 

equilibrium conversion X,. At equilibrium. the reaction rate is zero ( r ,  s 0). 
Therefore. 

A # B + C  I As X + X, . - 7, -+ 0 . thus. - + and therefore I' + ~3 

- r, 

and we see that an infinite reactor volume would also be necessary to obtain 
the exact equilibrium conversion, X = X,. 

To size a number of reactors for the reaction we have been considering, 
uRe will use FA, = 0.4 moI/s (calculated in Example 2- 1) to add another row to 
the processed data shown i n  Table 2-2 to obtain Table 1-3. 
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I 

(8) Quation (2-13) gives the volume of  a CSTR as a function of FA,,. X, and -r,,: 

I n  a CSTR, the composition, temperature, and conversion of the effluent stream an: 
rdentical ta that of the Ruid within the reactor, because perfect mixing is assumed. 
Therefore, we need to hiid the value of -rA (or reciprocal thereof) at X = 0.8. From 
either Table 2-2 or Figure 1- I ,  we see that when X = 0.8, then 

Substitution into Equation (2-1 3)  for an entering molar flow rate. FA* of 0.4 mol A/s 
and X = 0.8 gives 

(b) Shade the area in Figure 2-2 that yields the CSTR vocllume. Rearnnging Equa- 
tion (2- 13) gives 

In Figwe E2-2.1, the volume is equal to the area of a rectangle with a height 
(FAIj-rA = 8 rn3) and a base (X = 0.81. This rectangle is shaded in the figure. 

(E2-2.2) 

V = Levenspiel rectangle area = height x width 

The CSTR volume necessary to achieve 80% conversion is 6.4 m7 when oper- 
ated at 500 K. 830 kPa (8.2 am) ,  and with an entering molar flow rate ~f A of 0.4 
rnolh. This volume corresponds to a reactor about 1.5 rn in diameterv and 3.6 rn 
high. It's a large CSTR, but this is a pas-phase reaction, and CSTRs ate normally 
not used for gas-phase reactions. CSTRs are used primarily for liquid-phase reactions. 
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Plots of I l -r* vs. X 
arc sometimes 
referred to a< 

Lcvensprel plots 
(after Octave 
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Conversion. X 

figure EZ-2.1 Levenspiel CSTR plot. 

Example 2-3 Sizing a PFR 

The reaction described by the data in Tables 2-1 and 2-2 is to k carried out In a 
PI%. The entering molar flow rate of A is 0.4 rnofls. 
(a) First. use one of the integration formulas given in Appendix A.4 to determine the 

PER reactor volume necessary to achieve 80% conversion. 
(b) Next. shade the area in Figure 2-2 that would give the PFR the volume neces- 

sary to achieve 80% conversion. 
(c) Finally, make a qualitative sketch of the conversion. X, and the rate of reaction. 

-rA, down the length (volume) of the reactor. 

Solution 

We start by repeating rows ( I )  and (4) of Table 2-3. 

(a) For the PFR, the differential form of the mole balance is 

Rearranging and integrating gives 
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* 
100 P f  Rs 
in parallel 

PFR 

We shall use the jive poin~ quadrature formula (A-23) given in Appendix A.4 to 
numerically evaluate Equation 12-16), For the five-point formula with a final conver- 
siw of 0.8, gives for four equal segments between X = 0 and X = 0.8 with a 

I 0.8 segment length of AX = - = 0.2. The function inside the integral is evaluated at 
4 

[ Using values of FAJ-rA) in Table 2-3 yields 

The PFR reactor volume necessary to achieve 80% conversion is 2165 dm3. T h i s  
volume could result from a bank of 100 PERs that are each 0.1 m in diameter with 
a length of 2.8 m (e-g.. see Figures 1-8(a) and {b)). 
(b) The integral in Equation (2-16) can also be evaluated from the area under the 

curve of a plot of (FAd-vA) versus X. 

= J 2 d ~  = Area under the curve between X = 0 and X = 0.8 
(see appropriate shaded area in Figure E2-3.1) 

Conversion, X 

I Fl'lgure E2-3.1 Lebenspiel PFR p101 
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The area under the curve ail1 gibe the tubular reactor volume necessary to achiex 
the specified conversion of A .  For 80% conversion. the shaded area is roughly equ, 
to 2165 dm'(2.165 m"). 
(c) Sketch the pmf la of -r ,  and X down the length of the reactor. 

We know that as we proceed down the reactor and more and more of the reactant i 
consumed. the concentration of reactant decreases, as does the rate of disappearanc 
of A. However, the conversron increases as more and more reactant 1s  converted t 

product. For X = 0.2. we calculate the corresponding reactor volume using S i m ~  
?on's rule (given in Appendix A.4 as Equation [A-211) with AX = 0. I and the dat 
in rows 1 and 4 in Table 2-3, 

For X = 0.4. we can again use Simpson's rule wirh AX = 0.2 to find the react01 
volume necessary for a conversion of 40%. 

We can continue in this manner to arrive at Table E2-3.1. 

The data in Table E1-3.1 are plotted in Figures E2-3.2 la) and (b). 
One observes that the reaction rate, -XA,  decrease^ as we move down the 

reactor while the conversion increases. These plots are typical for reactors operated 
isothomally. 
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Figure E2-3.2ia) Conver.cion protile. Figure EZ-3.7(b) Reaction rate protile 

Example 2-4 Comparing CSTR and PFR Sizes 

I t  ES interesting to compare the volumer of a CSTR and a PFR required for the same 
job. To make thls comparison. we shall use the data in Figure 2-2 to learn which 
reactor would require the smaller volume to achieve a conversion of 80%: a CSTR 
or a PFR. The entering molar Row rate FAo = 0.4 molls, and the feed conditions are 
the same in both cases. 

The CSTR volume was 6+4 m" and the PI% voluine was 2. I65 m3. When we com- 
bine Figures El-2.1 and E2-3. I on the same graph. we see that the crosshatched 
area above the curve is the difference in the CSTR and PFR reactor volumes. 

For isothermal reactions greater than zero order (see Chapter 3 for zem 
order), the CSTR volume will urually be greater than the PFR volume for the same 
conversion and reaction conditions (temperature, Bow rate, etc.). 

We see that the reason the isotherma[ CSTR volume is usually greater than 
the PFR volume is that the CSTR is always operating at the Iowest reaction rate 
(e-g.. -rA = 0.05 in Figure E2-4.IIb)). The PFR on the other hand stans at a high 
rate at the entrance and gradually decreases to the exit rate, thereby requiring less 
volume because the volume is inversely proportional to the rate. However, for auto- 
catalytic reactions. product-inhibited reactions. and nonisothermal exothermic reac- 
tions. these trends will not always be the case. as we will see in Chapten 7 and 8. 
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: between 
CSTR & PFR 

1 Figre El-4.l(a) Comparison of CSTR and (b) -r, as a function of X. 
PFR reactor sizes. 

2.5 Reactors in Series 

Many times, reactors are connected in series so that the exit stream of one 
reactor is the feed stream for another reactor. When this arrangement is used, 
it is often possible to speed calculations by defining conversion in t e n s  of 
location at a point downstream rather than with respect to any single reactor. 
That is, the conversion X is the total nunrber of moles of A that have reacted 
up to that point per mole of A fed to thejirst reactor. 

Only valid for 
NO side streams For reactors in series 

X-  = Total moles of A reacted up to point i 
1 Moles of A fed to the first reactor 

However, this definition can only be used when the feed stream only 
enters the first reactor in the series and there are no side streams either fed or 
withdrawn. The molar flow rate of A at point i is equal to moles of A fed to 
the first reactor minus all the moles of A reacted up to point i: 

For the reactors shown in Figure 2-3, X, at paint i = 1 is the conversion 
achieved in the PFR, Xz ar point i = 2 is the total conversion achieved at this 
point in the PFR and the CSTR, and X,  is the totat conversion achieved iby all 
three reactors. 
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Reactor I 

To demonstsate these ideas, let us consider three different schemes of 
reactors in series: two CSTRs, two PFRs, and then a combination of PFRs and 
CSTRs in series. To size these reactors, we shall use laboratory data that gives 
the reaction rate at different conversions. 

2.5.1 CSTRs in Series 

The first scheme to be considered is the two CSTRs in series shown in 
Figure 2-4. 

Figure 2-4 Two CSTRs in series. 

For the first reactor, the rate of disappearance of A is -r,, at conversion XI .  
A mole balance on reactor 1 gives 

In - Out + Generation = 0 

Reactor 1: FAo-FAl  + r,,V, = O  (2- 19) 

The molar flow rate of A at point 1 is 

FA, =EAo-FAOXI (2-20) 

Combining Equations (2- 19) and (2-20) or rearranging 

lo the second reacror, the rate of disappearance of A. - r ~ ? .  is evaluated at 
the conversion of the exit stream of reactor 2, X2.  A mole baEance on the sec- 
ond reactor 

En - Out + Generation = 0 

Reactor 2: FA,-FA2 + rA2v = o  (2 -22)  

The molar flow rate of A at point 2 is 

= F ~ ~ -  F~J2 
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Reactor 2 

Combining and rearranging 

For the second CSTR recall that -r,: is evaluated at Xz and then use (X2-X,  
to calculate V2 at X2. 

In the examples that follow, we shall use the molar Row rate of A we cal 
culated in Example 2-1 (0.4 ma1 Ms) and the reaction conditions given i t  
Table 2-3. 

Example 2-5 Comparing Vohntes for CSTRs in Series 

For the two CSTRs in series, 40% convenion is  achieved in the first reactor. Wha 
is the volume of each of the two reactors necessary to achieve RO% overall conver 
sion of  the entering species A? 

Snlrtlion 

Fur reactor 1, we observe from either Table 2-3 or Figure E2-5.1 that when X = 0.4. 
then 

then 

(?) = S.O mi For reactor 2, when Xl = 0.8. then = - 
r~ X =  0.8 

I V2 = 3200 dm3 (liters) 



Sec. 2.5 Readon in Series 

To achreve the 
same over~ll 

convenlon, the 
tr~tal .olume fur 

two CSTRs In 
series i s  l e ~ s  than 

{hat required 
for one CSTR. 

We need only 
-r.4 = Jk) and 

FA" 10 size 
reactors. 

0.0 0.2 0.4 0.8 0. i  1.0 

Conversion X 

Figure EZ-5.1 Two CSTRs in .series. 

Note again that for CSTRs in series the rate - r ~ ,  i s  evaIuared at a conversion 
of 0.4 and rate -r+ is evaluated at a conversion of 0.8. The rota1 volume for these 
two reactors i n  senes i s  

By comparison. the volume necessary to achieve 80% conversion in one CSTR is 

Notice in Example 2-5 that the sum of the two CSTR reactor volumes (4.02 m3) 
in series is less than the volume of one CSTR (6.4 m3) to achieve the same 
conversion. 

Approximating a PFR by a large number of CSTRs in series 

Consider approximating a PFR with a number of small. equal-volume CSTRs of V, 
i n  series (Figure 2-5). We wanr to compare the total volume of all the CSTRs with 
the volume of one plug-flow reactor for the same conversion, say 808. 

uuuuu 
Figure 2.5 Modeling a PFR with CSTRs in series. 


